

RTSS@WORK 2019

	

Program Chair

• Song Han, University of Connecticut, USA

Program Committee

• Jingtong Hu, University of Pittsburgh, USA

• Hyoseung Kim, University of California Riverside, USA

• Jae W. Lee, Seoul National University, South Korea

• Shahriar Nirjon, UNC Chapel Hill, USA

• Selma Saidi, Hamburg University of Technology, Germany

• Rui Tan, Nanyang Technological University, Singapore

• Junlong Zhou, Nanjing University of Science and Technology, China

Message from the Program Chair

We cordially welcome you to RTSS@Work, the Open Demo Session of the 40th IEEE Real-Time
Systems Symposium (RTSS).

The goal of RTSS@Work is to provide a platform for researchers to present prototypes, tools, simu-
lators, and systems, that extend the state of the art in real-time technologies and techniques. This
session augments the traditional forum by enabling presenters to demonstrate working systems, thereby
allowing them to directly engage with the audience, generate interest in new research topics, and en-
courage wider adoption of common frameworks. This year, the Program Committee has selected eight
high-quality demonstrations from diverse research areas and application domains.

We would like to thank all those who have contributed in making an excellent program for RTSS@Work
2019. We thank all the reviewers for their hard work in providing valuable feedback to the authors,
and the organisation of RTSS 2019 for including this demo session in the symposium. Finally, we
would like to thank all the authors for their fine contributions.

Song Han, University of Connecticut, USA

RTSS@Work 2019 Program Chair

Contents

MoFi: Environment-Independent Device-Free Human Motion Detection via WiFi
Xi Chen, Hang Li, Chenyi Zhou, Xue Liu, and Gregory Dudek 1

Polygraph Tool Suite: Configuration and Conformity Validation for Data Flow Based
Real-Time Systems
Shuai Li, Matteo Morelli, Ansgar Radermacher, Jérémie Tatibouët, Pauline Deville, Arnault
Lapitre, Sébastien Gérard, Chokri Mraidha 3

LiteOS for Intermittent Computing
Nan Guan, Qiulin Chen 5

A Comprehensive Framework for Energy Management of Hard Real-time Networks-
on-Chip
Thawra Kadeed, Rolf Ernst 7

A Gem5 Multi-OS Mixed-critical Many-core Simulation Model for Self-aware Systems
Eberle A. Rambo, Robin Hapka, Rolf Ernst 9

Runtime Architect: Link Performance Design to Runtime Aspects
Adel Gasri, Rafik Henia, Laurent Rioux, Nicolas Sordon 11

toki: A Build- and Test-Platform for Prototyping and Evaluating Operating System
Concepts in Real-Time Environments
Oliver Horst, Uwe Baumgarten 13

Modelling and Timing Analysis of Real-time Applications on Evolving Automotive
E/E Architectures using Rubus-ICE
Alessio Bucaioni, John Lundbäck, Mattias Gȧlnander, Kurt-Lennart Lundbäck, Mohammad
Ashjaei, Matthias Becker, Saad Mubeen 15

0

MoFi: Environment-Independent Device-Free
Human Motion Detection via WiFi

Xi Chen, Hang Li, Chenyi Zhou, Xue Liu, and Gregory Dudek
Samsung AI Center, Montreal, Quebec, Canada

Abstract—Detecting human motion using standard Wi-Fi sig-
nals in a device-free manner is a promising yet challenging task.
The state-of-the-art systems passively collect the Wi-Fi Channel
State Information (CSI), and train a model to extract motion
information from the temporal changes in CSI. However, these
systems are usually overfitted by the environment specific compo-
nents of CSI, making hard to adapt to environment changes. To
address this issue, we propose MoFi, which automatically filters
out the impact of environment related features of CSI and adapts
itself to a new or changed environment.

I. INTRODUCTION

Device-free human motion detection is the process of
detecting whether there is a human moving in an area of
interest, without the requirement that they carry any special
hardware. This is a fundamental functionality that can leverage
a wide range of applications, such as security monitoring,
smart device wake-up, automatic light control, and appliance
automation. Compared with camera or LiDAR based systems,
Wi-Fi based systems have several distinct benefits, including
a ubiquitous coverage due to the widespread nature of Wi-
Fi infrastructure, an ability to detect through walls/darkness
provided by the signal propagation, the preservation of privacy
and the low cost. The state-of-the-art Wi-Fi based systems
(e.g., Widar [1]) analyze temporal changes in Wi-Fi Channel
State Information (CSI) to detect human motion, and achieve
promising performance in a controlled environment.

Those systems, however, have some notable limitations. The
Wi-Fi signals propagating through an indoor environment em-
bed a significant amount of environment specific information
in the CSI. If the environment changes, the motion detection
system previously trained and tuned will be corrupted.

To address this issue, we propose MoFi, an environment-
independent device-free human motion detection system.
MoFi adaptively adjust itself to different environments by
automatically removing the impact of environment-dependent
components in CSI. Moreover, unlike existing environment-
adversarial systems, such as AutoFi [2] and EI [3], MoFi is
a plug-and-play solution requiring no training. In addition,
MoFi is able to meet the deadlines of periodic detection tasks.

II. DESIGN OF MOFI

A. Data Collector

Consider an area covered by the Wi-Fi signals between an
Access Point (AP) and a commercial off-the-shelf (COTS)
device. Suppose there are totally NS Wi-Fi spatial streams, and
the Wi-Fi channel is divided into NC frequency subcarriers.
MoFi is deployed on the Wi-Fi device, passively listening

Fig. 1. Overview of MoFi

to the Wi-Fi traffic. For every received packet, the Wi-Fi
chip on the COTS device extracts one CSI reading, which
is an estimate of channel responses for all NC subcarriers
on all the NS streams. Let h(i, j) denote the complex CSI
value of the ith subcarrier on the jth streams. Then the CSI
magnitudes of the jth streams can be expressed as a vector
hj as hj = [|h(1, j)|, |h(2, j)|, · · · , |h(NC , j)|].

We then normalize the magnitudes of CSI for each stream
into a range of (0, 1]. The normalized CSI magnitude vector
is denoted as h̄j . We concatenate these normalized vectors
from NS streams to create an aggregated CSI magnitude vector
sk for packet k as sk = [h̄1, h̄2, · · · , h̄NS

]. This sk is then
stored in a buffer of size NB1. Once full, the buffer outputs
an NCNS ×NB1 dimensional CSI magnitude matrix S as

Sk = [sTk , s
T
k+1, · · · , sTk+NB1−1]

T . (1)

After this,the oldest magnitude vector is discarded.

B. PCA-based Denoiser
COTS Wi-Fi APs and devices usually implement adaptive

power control and Adaptive Modulation and Coding (AMC),
which induce abrupt CSI shifts. To remove them, we em-
ploy a Principal Component Analysis (PCA) noise removal
process. This denoiser first computes PCA on Sk to achieve
an NCNS × NP dimensional matrix Θk containing the top
NP principal components (PCs), and a corresponding PC
score vector vk. We then set the first PC (which captures the
majority of the abrupt noise [4]) to a zero vector, and obtain
a denoised PC matrix Θ̂k. Also, we set the first PC score to
zero, and achieve a denoised PC score vector as v̂k. We use
them to reconstruct a denoised CSI magnitude matrix Xk as

XK = v̂k × Θ̂k. (2)

Note that XK is not the project of Sk onto the PCs, but a CSI
magnitude matrix reconstructed after removing the first PC.

1

C. Feature Extractor

Each row of an NCNS×NB1 dimensional denoised matrix
Xk is a time sequence of length NB1 (from the kth packet
to the (k +NB1 − 1)th packet). We calculate the variance of
each row to achieve a variance vector vk of length NCNS as
vk = [v1, · · · , vNC

, vNC+1, · · · , v2NC
, · · · , vNCNS

]. Variance
solely is not a robust indicator of human motions, as it
also contains unknown changes caused by (residual) random
noise. In this paper, we propose to use the Variance of
Variance (VOV) as a robust feature, which eliminates the
random variation from noise and focuses (almost) purely
on human motion. Concretely, we setup another buffer of
size NB2 to store the variance vectors. Once the buffer is
full, it outputs an NCNS × NB2 variance matrix Vk as
Vk = [vT

k ,v
T
k+1, · · · ,vT

k+NB2−1]
T , and discards the oldest

element from the buffer. For each row in Vk, we calculate the
variance, and achieve a VOV vector Fk of length NCNS as

Fk = [f1, · · · , fNC
, fNC+1, · · · , f2NC

, · · · , fNCNS
]. (3)

D. Motion Detector

In this paper, we adopt an environment-independent plug-
and-play detector, which requires no training and provides
rapid response. Given a Fk, we calculate per-stream mini-
mums to obtain a vector zk as zk = [z

(k)
1 , z

(k)
2 , · · · , z(k)NS

],

where z(k)n = min(f(n−1)NC+1, · · · , fnNC
) is the minimum

VOV in the nth stream from the kth feature vector. We then
compare this minimum vector to a pre-defined threshold vector
γ = [γ1, · · · , γNS

]. If all the elements in zk is larger than the
corresponding one in γ, then MoFi outputs an motion indicator

yk =

{
1 if ∀i, z(k)i > γi,

0 otherwise,
(4)

and store it in an indicator buffer of size NB3. If the buffer is
full, the oldest element is discarded.

To support motion detection tasks with a period of T
seconds, MoFi has to gather at least NB2 packets every T
seconds (suppose the NB1 buffer is full). To this end, the
Wi-Fi traffic must be faster than dNB2/T e pps. If the on-the-
air Wi-Fi traffic is slower than this speed, MoFi will send out
extra pings to boost the traffic. In this way, MoFi can output at
least one yk every T seconds. Suppose MoFi already collected
ND ≤ NB3 motion indicators [yk, · · · , yk+ND−1], when a
periodic task deadline is δ seconds (δ � T) away. At this
moment, MoFi outputs one detection result as

Ymotion =

{
True, if

∑D−1
i=0 yk+i > 0,

False, otherwise.
(5)

III. EXPERIMENTS

In our experiments, we used a TP-Link AC1750 router as
the TX, and a Dell Latitude E7440 laptop with Intel 5300
Wi-Fi NIC as the RX. We installed Linux CSI Tool [5] to
extract CSI from the Intel NIC on the RX. MoFi was also
implemented on the RX side. Suppose an upper layer appli-
cation poses a periodic motion detection task with a period of

Fig. 2. Example experiment setup in an office room

1 second. Unlike previous systems that require heavy Wi-Fi
transmissions (e.g., [1], [3], [4]), MoFi sets the Wi-Fi traffic
rate between TX and RX as low as 20 pings per second. The
buffer sizes are set to NB1 = 20, NB2 = 20, and NB3 = 40,
respectively. Empirically, we found that ∀i, γi = 0.0001 is a
robust setting under different environments.

We conducted different experiments to evaluate MoFi under
different environment changes. False Positive Ratio (FPR) and
False Negative Ratio (FNR) were used as the performance
metrics. We compared MoFi with the motion detection module
of AutoFi. Both systems were setup under the same environ-
ment. Later, we changed the environment to see how well they
adapted to different changes. For each environment change,
we recorded data for roughly 2 hours, which corresponds to
144, 000 Wi-Fi packets and 7, 200 detection outputs. Table I
summarizes the comparison. We see that the VOV-based MoFi
outperformed the variance-based AutoFi. Moreover, MoFi
maintained its good performance in changed or even new
environments without calibration. The FNR remained 0.0%
while FPR was as low as 0.014%.

TABLE I. MOTION DETECTION RESULTS

Env. Changes MoFi (FPR;FNR) AutoFi (FPR;FNR)
No change 0.000%; 0.000% 2.125%; 9.681%

Turned on microwave 0.000%; 0.000% 2.069%; 9.986%
Different users 0.000%; 0.000% 2.986%; 11.361%

Moved the chairs 0.000%; 0.000% 6.902%; 13.986%
Opened the door 0.000%; 0.000% 7.069%; 14.375%

Rotated the router&laptop 0.000%; 0.000% 19.069%; 8.208%
Moved to another room 0.014%; 0.000% 17.291%; 13.208%

REFERENCES

[1] Y. Zheng, Y. Zhang, K. Qian, G. Zhang, Y. Liu, C. Wu, and Z. Yang,
“Zero-effort cross-domain gesture recognition with wi-fi,” in MobiSys.
ACM, 2019, pp. 313–325.

[2] X. Chen, C. Ma, M. Allegue, and X. Liu, “Taming the inconsistency of
wi-fi fingerprints for device-free passive indoor localization,” in INFO-
COM. IEEE, 2017, pp. 1–9.

[3] W. Jiang, C. Miao, F. Ma, S. Yao, Y. Wang, Y. Yuan, H. Xue, C. Song,
X. Ma, D. Koutsonikolas, W. Xu, and L. Su, “Towards environment
independent device free human activity recognition,” in MobiCom. ACM,
2018, pp. 289–304.

[4] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke recognition
using wifi signals,” in MobiCom. ACM, 2015, pp. 90–102.

[5] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering
802.11n traces with channel state information,” SIGCOMM Comput.
Commun. Rev., vol. 41, no. 1, pp. 53–53, 2011.

2

Polygraph Tool Suite: Configuration and Conformity

Validation for Data Flow Based Real-Time Systems

Shuai Li, Matteo Morelli, Ansgar Radermacher, Jérémie Tatibouët, Pauline Deville, Arnault Lapitre, Sébastien Gérard, Chokri Mraidha
CEA LIST

Paris-Saclay, France
<first-name>.<last-name>@cea.fr

Abstract—With the shift towards software centric

architectures, automotive OEMs need formal models and tools to

tackle new integration challenges that severely increase the

complexity of real-time system synthesis. Polygraph Tool Suite

proposes a new Synchronous Data Flow model for functional

architecture analysis. It provides static model validation, model

simulation, schedulability analysis, and platform-specific

configuration file generation. Post-deployment, runtime

conformity to the specification is automatically validated.

Keywords—real-time scheduling, schedulability analysis,

conformity validation, synchronous data flow, automotive

I. INTRODUCTION

Motivated by the integration of autonomous driving and
connected cars, there is a paradigm shift in the automotive
industry towards platforms with more computing capability and
software-centric architectures. As critical software becomes
more prominent, engineers must tackle new challenges that
increase the complexity of real-time system synthesis. Models
and tools of the real-time embedded system community must
be adopted in order to help OEMs integrate applications
provided by tier 1 and 2 suppliers.

Polygraph Tool Suite (PTS) is a design tool that aims at
helping software integration in real-time data flow oriented
systems. The tool provides a modeler for Polygraph [8], a
Model of Computation and Communication (MoCC) that
extends Synchronous Data Flow (SDF) [1] with frequency
arithmetic and adjustable communication rates (fractions). As a
configuration tool, PTS helps develop consistent (e.g., no buffer
overflows), alive (e.g., no deadlocks), and schedulable systems.
As a conformity validation tool, PTS automatically checks
correctness of communication rates and real-time properties of
the runtime, w.r.t. the design model. A demo video, of an
Advanced Driver Assistance System (ADAS), is available
online [2].

Schedulability analysis is a major tool of PTS and a focus
of this paper. Existing schedulability analysis tools [3, 4, 9] are
not incompatible, but complementary with PTS. Indeed PTS
uses classical real-time scheduling theory to analyze its SDF-
based models, with platform allocations, as suggested by [5].

Compared to SDF-based tools [6], PTS is based on an
extended SDF model. Furthermore, as mentioned, contrary to
such tools, PTS analyzes real-time constraints not only through
finding a cyclic behavior in the SDF system, but through
classical real-time scheduling theory.

In this paper, PTS focuses on the automotive domain,
therefore it is complementary to implementation platforms like
AUTOSAR – a standard automotive software architecture – and
its development tools [7]. Indeed, PTS has an underlying formal
SDF model whose semantics can be integrated in the
AUTOSAR meta-model. Unlike AUTOSAR tools that mostly
target implementation design, PTS is at the Functional
Architecture Analysis [10] level of abstraction. PTS also fills
the gap between both levels of abstraction through AUTOSAR-
specific ARXML generation. Compared to design tools based
on Architecture Description Languages (ADL), such as AADL
and EAST-ADL [10], PTS uses a formal MoCC that can be
integrated in these ADLs.

The rest of the paper is organized as follows. In Section II,
the Polygraph model is informally described. Section III
showcases the PTS methodology and its tools. Section IV
concludes the paper by proposing some future work.

II. POLYGRAPH, AN EXTENSION OF SDF

The underlying model of PTS is an extension of
Synchronous Data Flow (SDF). The model and its theorems are
published in [8]. In this paper, we give an informal description.

Polygraph adds frequency constraints, rational
communication rates, and untimed actors that are not time-
triggered. The latter lessens the synchronous constraints of
classic SDF, which limits too much computing resources and is
therefore not adapted to automotive systems where resources
and costs must be optimized.

A Polygraph model is a graph with Actors connected by
directed Channels. Actors represent tasks that consume some
incoming data tokens, processes them, and produce some
outgoing data tokens. The number of tokens, that an Actor
needs for activation, is specified by its incoming Channels.
Likewise for the number of tokens an Actor produces. An Actor
can also be activated periodically. Actors have a Worst Case
Execution Time (WCET), activation jitter, fixed-priority, and
processor allocation.

A consistent Polygraph model has a cyclic behavior
represented by Actors’ activation vectors [1, 8]. Such a vector
defines time slots in which Actors must activate and finish. The
duration of a slot depends on the frequencies specified in the
model. The total duration is the hyperperiod of Actors.

III. POLYGRAPH TOOL SUITE METHODOLOGY AND TOOLS

Within Polygraph Tool Suite, we have implemented a
methodology automated as an Eclipse Cheat Sheet. In this paper

3

we describe the configuration and conformity validation tools,
in which each iteration consists in (A) specifying a consistent
functional architecture, thanks to formal modeling, static
validation, and simulation in Polygraph, (B) proposing a
schedulable task model, (C) configuring the software and
implementing it, and finally (D) validating the implementation
at runtime. The following sections describe each of these steps
and their tools.

A. Modeling, static validation, and simulation

PTS offers a graphical modeling tool to design a system in
the Polygraph formalism. The modeling language is
implemented as a UML profile in the open source Papyrus
modeler (http://eclipse.org/papyrus).

Consistency and liveness of Polygraph models can be
statically validated during modeling, using adapted classic SDF
theorems. An execution engine for Polygraph can simulate the
model to evaluate functional correctness. The simulator
integrates full debug functionalities (breakpoints, values).

B. Schedulability analysis

Actors have time constraints inferred from their activation
vectors. They also have platform-specific annotations. In this
paper, we assume partitioned multiprocessor platforms with
fixed-priority scheduling policy. A real-time transaction task
model [11] is automatically generated from the Polygraph
model. The task model, with its time parameters such as period,
offset, jitter, and deadline, expresses jobs representing Actor
activation vectors. The task model is specified using the
MARTE [10] modeling language. MARTE serves as a pivot for
many schedulability analysis tools such as Time4Sys [9],
MAST [4], and now PyCPA [3] through the work of this paper.

The task model is then translated into PyCPA Python scripts
for compositional schedulability analysis. We adapted PyCPA
for task models resulting from Polygraph, in order to lessen
pessimism through precedence dependencies exploitation [11].
Worst Case Response Times (WCRT) are shown in Gantt
charts, while processor load are presented as pie charts. The
results are propagated back to the different models for
traceability. Fig. 1 shows the schedulability analysis tool.

Fig. 1 Polygraph Tool Suite schedulability analysis: Polygraph model on the

left, WCRT in Gantt chart, processor utilization in pie chart

C. Configuration file generation

For schedulable systems, platform-specific configuration
files are generated for each Polygraph Actor. In this paper, we
target ARXML files of AUTOSAR Adaptive. The ARXML
files contain information about, e.g., interfacing and allocation.
OEMs forward these files as specifications to their suppliers.
Since the files are generated from valid system designs, such an
approach limits specification errors and accelerates integration
in a multi-supplier economic model.

D. Conformity Validation

Post-deployment, at runtime, incorrect Actor internal
implementation by suppliers may violate the system constraints.
PTS offers a runtime conformity validation tool.

Polygraph runtime monitors produce traces containing
information on Actor activations, end of computation, and
tokens exchanged. PTS detects deviations between traces and
the formal design model. For debugging purposes, the tool is
also able to replay and animate the traces in the model.

IV. CONCLUSION AND FUTURE WORK

This paper presented Polygraph Tool Suite. The tool assists
real-time software development by providing a methodology
with formal SDF modeling and simulation, schedulability
analysis, implementation configuration, and runtime conformity
validation.

Currently Polygraph is being extended for hierarchical
modeling. Furthermore, we will integrate the Polygraph MoCC
into front-end ADLs such as EAST-ADL [10]. Although PTS is
mostly built upon open-source software (Papyrus, PyCPA) some
of its SDF tools, still closed-source, will be distributed in open-
source in the future.

REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” in IEEE Trans.

Comput., vol. 36, no. 1, pp. 24-35, Jan, 1987.

[2] https://youtu.be/ZR2XDEqvCmA

[3] J. Diemer, P. Axer. and R. Ernst, “Compositional performance analysis in

python with pycpa,” in WATERS 2012, Pisa, Italy.

[4] M.G. Harbour, J.G. García, J.P. Gutiérrez and J.D. Moyano, “Mast:
Modeling and analysis suite for real time applications,” in ECRTS 2001,

Delft, Netherlands.

[5] A. Singh, P. Ekberg, and S. Baruah, “Applying Real-Time Scheduling
Theory to the Synchronous Data Flow Model of Computation,” in ECRTS

2017, Dagstuhl, Germany.

[6] J. Eker et al., "Taming heterogeneity - the Ptolemy approach," in

Proceedings of the IEEE, vol. 91, no. 1, pp. 127-144, Jan. 2003.

[7] U. Honekamp, "The Autosar XML Schema and Its Relevance for Autosar

Tools," in IEEE Software, vol. 26, no. 4, pp. 73-76, July-Aug. 2009.

[8] P. Dubrulle, S. Louise, C. Gaston, N. Kosmatov, A. Lapitre, “A Data Flow

Model with Frequency Arithmetic,” in FASE 2019, Prague, Czech

Republic.

[9] L. Fejoz et al., “Time4Sys – Integrating Timing Verification in your

Engineering Practices,” in RTSS@Work 2018, Nashville, TN, USA.

[10] F. Mallet, M.A. Peraldi-Frati and C. André, “MARTE CCSL to execute

East-ADL timing requirements,” in ISORC 2009, Tokyo, Japan.

[11] J.C. Palencia, and M.G. Harbour, “Exploiting Precedence Relations in

Schedulability Analysis of Distributed Real-Time Systems,” in RTSS

1999, Phoenix, AZ, USA.

4

LiteOS for Intermittent Computing
Nan Guan

The Hong Kong Polytechnic University
Qiulin Chen

Huawei Technologies Co., Ltd.

Abstract—It is expected that trillions of IoT devices will be
in use in near future. One fundamental challenge to deploy
and maintain such a large number of devices is how to power
them in an efficient, low-cost and sustainable manner. The
rapid development of energy-harvesting hardware technology
and ultra-low-power computing systems make it possible to build
battery-less IoT devices that are completely powered by energy
harvested from environment. A notable feature of such system
is intermittent availability of computation resource, which raises
significant challenges to the design of both software and hardware
for such computing systems. To address such challenges, a
new computing paradigm, namely Intermittent Computing, has
been proposed and drawn increasing attentions in recent years.
The key enabler for intermittent computing is the operating
system, which provides fundamental services to support correct
intermittent execution of applications under unpredictable power
supply. In this paper we present LiteOS-Intermitter, a lightweight
operating system to support intermittent computing based on
Huawei LiteOS.

I. INTRODUCTION

In recent years, there have been increasing requirements for
ultra-low-power IoT devices. Advances in energy-harvesting
technology have made it possible to build IoT devices that ex-
ecute completely using energy harvested from the surrounding
environment, so that the device life-time is not restricted by the
battery. The computation in such systems is intermittent as the
the energy is not always available to be harvested. Software
running on an intermittent computing system executes until
energy is depleted and the device browns out. When energy is
again available, software resumes execution from some point
in the history of its execution. In an energy-harvesting system,
the power failures may occur very frequently (e.g., hundreds
of time per second). Therefore, people must design the system
in an intermittence-aware manner so that the it can make
meaningful progress in the presence of frequent power failures.

Intermittent computing raises challenges on different soft-
ware/hardware layers, especially to the operating system which
provides essential abstraction and management of the hardware
resource. Recently, many tiny operating systems and ker-
nels have been developed to support intermittent computing,
including Ratchet [3], Clank [6], HarvOS [1], Chain [2],
Mayfly [4], Chinchilla [8], InK [5], etc. These systems can be
classified into two categories: instruction-level check-pointing
and task-based/transactional execution model. In this paper, we
present LiteOS-Intermitter, a lightweight operating system
to support intermittent computing based on Huawei LiteOS.
Our system adopts the transactional execution model, and aims
to provide a more comprehensive operating system support
comparing with existing systems in the same category.

Fig. 1. Basic Kernel of Huawei LiteOS

II. BRIEF OVERVIEW OF HUAWEI LITEOS

Huawei LiteOS is an open-source lightweight operating
system designed for IoT devices, wearable devices and other
power and time sensitive computing systems. The basic kernel
size is smaller than 10K, and the response time is within
100 us on typical embedded processor platforms. The major
component of Huawei LiteOS’s basic kernel is shown in Figure
1. Upon the basic kernel, Huawei LiteOS provides a Sensor
Framework to support low-delay, high-precision sensing by
various Intelligent sensing algorithms, a Connectivity Engine
to support a rich set of connectivity technologies (such as
short-distance, LTE, and NB-IoT communication), and an Op-
erating Engine to support a high-performance and lightweight
VM based on JavaScript. More information about Huawei
LiteOS can be found at [7].

III. LITEOS-INTERMITTER

We develop LiteOS-Intermitter based on the basic kernel
of Huawei LiteOS to support intermittent execution of appli-
cations. LiteOS-Intermitter adopts the transactional execution
model, modifies several components in the kernel and provides
several new kernel services, and provide several analysis tools
to facilitate the developer to develop correct and efficient
intermittently executing applications.

A. Transactional Execution Model

Intermittent computing requires that once the system en-
counters power failure, the whole system must roll back to a
previous execution point where system state is consistent (i.e.,
checkpoint). Existing checkpoint techniques typically save the
whole system image at given time spots, the overhead of which
is not acceptable for IoT devices.

5

Fig. 2. The Major Components of LiteOS-Intermitter.

We adopt a transactional execution model for application
development to solve the problem. In LiteOS, an application is
programmed as a task (i.e., a process). In LiteOS-Intermitter, a
task is composed of a series of atomic transactional execution
blocks (TEB). As a TEB starts, related data are copied from
NVM to RAM, and the new values are committed to NVM
at the end of the TEB. If a TEB encounters power failure
during its execution, the OS will restart from the entry of the
un-finished TEB. As TEB construction is done at design time,
further optimizations can be performed to reduce system over-
head, such as data volume written to NVM and unnecessary
task re-execution.

B. New Kernel Services

The state consistency must be guaranteed for not only the
applications, but also the operating system itself. LiteOS-
Intermitter includes the following features to support inter-
mittent execution of the operating system.

• Persistent system state. Like in the execution of ap-
plications, when power failure occurs in an OS service,
the system should roll back to a recent state-consistent
point. This is achieved by persistently maintaining system
variables on NVM.

• Transnational OS execution. Similar to TEBs, merely
storing system variables on NVM will not guarantee
correct execution. The update to system variables by an
OS service must be implemented as a transaction. A new
layer of operation is built on existing LiteOS service
routines to make them run as transactions.

Moreover, the following functionalities are currently being
revised/added to LiteOS to support intermittent execution.

• Concurrency control. To guarantee a TEB’s atomic
execution in the presence of preemption and interrupt
handling, we adopt deferred concurrency control. If a
preemption/interrupt will break a TEB’s execution, we
defer the response to such activities to the end of the
TEB.

• Run-time TEB merging To reduce the overhead for
storing/loading data to/from NVM at TEB boundaries,
we implemented a run-time TEB merging mechanism.
As long as the predicted energy is enough, the system

will proactively merge multiple user-specified TEBs into
a big TEB, or a big transaction, by which less data will
be written to NVM.

• Persistent time management: Normal computing sys-
tems do not have to maintain persistent system time, since
once the system restarts, all processes are destroyed and
restarted. In intermittent systems, as a task (composed of
multiple TEBs) restarts from an intermediate location, a
consistent and persistent system time must be provided
to the task. We provide a framework to allow system
designers to be aware of the current time from exter-
nal time sources. In cases where external time is not
available, LiteOS-Intermitter provides an interface for the
application developers to handle exceptions regarding lost
of system time.

• Run-time energy monitoring. A key run-time service
is to precisely monitor the available energy state to
support dynamic TEB merging as long as there is enough
energy. The main difference from predicting the energy
percentage of a battery is that our energy monitoring
module has to furthermore predict energy harvesting to
precisely estimate future energy state for safe and efficient
intermittent execution.

C. Analysis Tools
Currently, we are in the progress of developing a set of

analysis tools to help the developers to build correct yet
efficient applications on LiteOS-Intermitter.

• Data live range analysis will be conducted after the
applications are developed. The analysis makes sure
that data, which have to be stored to NVM on TEB
boundaries, are not neglected by application developers
in the declaration. On the other hand, the analysis will
also help to find data that are not needed to be stored to
NVM, and thus reduces state maintenance overhead.

• Worst-case energy consumption estmiation must be
performed to ensure progress of the system. Although
runtime energy monitoring is possible, off-line analysis
of TEBs will provide strict guarantee to fit TEBs into
given energy envelop.

• TEB builder automatically decompose the original task
into TEBs (or big TEBs into smaller TEBs) based on the
capability of the above two supporting functionalities.

REFERENCES

[1] Naveed Anwar Bhatti and Luca Mottola. Harvos: Efficient code instru-
mentation for transiently-powered embedded sensing. In IPSN, 2017.

[2] Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable
intermittent programs. OOPSLA, 2016.

[3] Joel Van Der Woude etc. Intermittent computation without hardware
support or programmer intervention. In OSDI, 2016.

[4] Josiah Hester etc. Timely execution on intermittently powered batteryless
sensors. In SenSys, 2017.

[5] Kasim Yildirim etc. Ink: Reactive kernel for tiny batteryless sensors.
SenSys, 2018.

[6] Matthew Hicks. Clank: Architectural support for intermittent computa-
tion. In ISCA, 2017.

[7] Huawei LiteOS. https://github.com/liteos.
[8] Kiwan Maeng and Brandon Lucia. Adaptive dynamic checkpointing for

safe efficient intermittent computing. In OSDI, May 2018.

6

A Comprehensive Framework for Energy
Management of Hard Real-time Networks-on-Chip

Thawra Kadeed, and Rolf Ernst
IDA, TU Braunschweig
Braunschweig, Germany

{kadeed|ernst}@ida.ing.tu-bs.de

Abstract—To cope with the ever-increasing complexity of multi
processing architecture, Networks-on-chip (NoCs) are employed
as a promising solution for Multiprocessor Systems-on-Chip
(MPSoCs). In turn, NoCs’ associated energy consumptions have
immensely increased. Specifically, hard real-time Networks-on-
chip must manifest limited energy consumption as reliability
issues in such a shared resource jeopardize all system guarantees.
In this paper, we propose a safe and efficient approach that
allows global and online energy management under temporal
guarantees, i.e., all deadlines of critical functions are met. The
approach introduces a comprehensive framework to save energy
on the NoC data layer through a control layer that contains
multiple Power-Aware Network Controllers (PANCs). PANCs ex-
plore and integrate multiple energy-savings schemes in the face
of the diversity of energy dissipation sources. To safely apply the
PANCs in hard real-time systems while meeting the deadlines,
a formal worst-case timing analysis of the additional latency
induced by the control layer is provided. This paper describes
the comprehensive framework for NoC energy-savings through
the PANCs, and illustrates the demonstration scenario.

I. INTRODUCTION

Networks-on-chip (NoCs), as a scalable and modular in-
terconnect, are employed as a promising solution for Mul-
tiprocessor Systems-on-Chip (MPSoCs). In such complex
chips, NoC high energy consumption is a critical concern
as it may lead to system reliability issues. NoCs contribute
significantly to the energy consumption of total chip energy
budget (e.g., SCORPIO research chip design [1]). In this
paper, we investigate integrated energy control for NoC routers.
Energy dissipation is mainly caused by dynamic and leakage
energy sources. The diversity of energy sources calls for an
integration of multiple energy-savings schemes, e.g., Dynamic
Voltage and Frequency Scaling (DVFS), Clock-Gating (CG),
and Power-Gating (PG).

Several NoC energy management schemes have been in-
tensively researched. However, applying them to real-time
NoC systems makes critical functions vulnerable, jeopardizing
temporal guarantees. Thus, those schemes must guarantee the
real-time constraints. DVFS reduces the NoC power consump-
tion by adjusting the NoC frequency. A recent contribution in
optimizing the power for hard real-time NoCs employing DVFS
is done by [2]. DVFS is still limited to the circuit physical
properties. That is, it cannot lower the frequency/voltage below
the transistor limited bounds that are set during the design
process. CG has a strong effect on energy-savings as the
major dissipation of dynamic power is caused by the clock-

tree that even increases the quiescent power (i.e., no load).
The clock-tree power overhead is attributed to the activity
on the clock pins of high-level non-clock gated synchronous
elements, as introduced in [3]. PG schemes feature leakage
power reduction. A recent work [4] provides a method for
energy-savings employing PG when real-time systems are
concerned. However, PG schemes are limited to solely leakage
energy-savings.

Integrating the aforementioned energy-savings schemes is
highly promising as it targets simultaneously different energy
sources. Thus, we propose a comprehensive framework that
provides global and dynamic NoC energy management using
a control layer. The latter employs power-aware network
controllers (PANCs), which efficiently manage the NoC energy
based on the current network utilization and the application
real-time requirements. The PANCs feature multiple energy
management schemes to enable significant energy-savings
under temporal guarantees.

The major contribution of this paper is to explore
the impact of the joint application of CG, PG, and DVFS,
using a comprehensive framework for NoC energy control
through the PANCs. Additionally, as we comply our approach
with hard real-time requirements, an analysis framework to
derive the worst-case timing overhead of our approach is
provided in order to derive the safe applicability of the PANCs.
To the best of our knowledge this is the first work that
investigates integrating multiple energy-savings schemes, while
simultaneously providing hard real-time temporal guarantees for
NoCs deployments in safety critical domains (e.g., automotive).

II. DYNAMIC ENERGY CONTROL DEMONSTRATION

In this paper, we propose a predictable and safe energy
management approach for NoC routers, which extends the work
of Kadeed and et al. [5] in order to emphasize the compre-
hensive NoC energy control framework. The approach is safe
to be applied on hard real-time systems as it provides system
temporal guarantees. Figure 1 illustrates the block diagram of
the framework, employing PANCs. The demonstration at the
conference will mainly showcase the blocks in the framework,
highlighted in orange.

Additionally, we employ the control of a vehicle with
assistance functions usecase [5], in order to demonstrate the
impact of PANC in automotive domains. The experimental
results indicate that PANC achieves 91.1% energy savings

7

Tasks properties: e.g.

• period

• deadline

Temporal

Analysis

Framework

PANC

approach

Baseline

NoC energy

NoC

energy-savings

extraction

Technology

library

NoC

active-time

traces

App.

slacks
PANC

Ovd

Energy-savings

report

Fig. 1: Block diagram of the comprehensive framework for
NoC energy management, employing PANC

compared with a baseline NoC (none of the energy-savings
schemes has been applied), as detailed in [5]. To this end,
the application tasks properties are provided first to PANC as
an input. Moreover, tasks deadline slacks are also provided
to PANC through the temporal analysis framework, which
relies on PANC latency overhead (PANC Ovd) to compute the
slacks. The deadline slacks DSlacki define the time budget
between the task’s deadline (Di) and its worst-case traversal
time, accounting for the PANC latency overhead (TPANC

i). It
is computed as follows:

DSlacki = Di − TPANC
i , (1)

The computation of TPANC
i is performed through the temporal

analysis framework. Thus, as we conform our approach to hard
real-time systems where tasks deadlines should be met, PANC
applies CG, PG, and DVFS on NoC routers upon tasks positive
slacks. During run-time, PANC generates traces that reflect
the observed NoC active times. That is, the trace contains
varying time intervals under which the NoC router is on/off with
the respective frequency. The NoC energy-savings extraction
block relies on the observed traces and the baseline NoC
energy in order to derive the NoC energy-savings figures.
The baseline NoC energy is derived using ASIC design flow
employing Synopses tool chain for both 65nm (UMCs) and
28nm (TSMCs) technologies [4], [5].

A. PANC approach

PANC is integrated in the OMNeT++ NoC simulator in
order to control the NoC power. It implements a protocol-
based synchronization to know the global state of the NoC,
and applies this knowledge to save energy while keeping the
system predictable [5]. Thus, once PANC receives a NoC
request/release (Req/Rel) message from a sender, it goes
through three steps to serve the message, as depicted in
Figure 2. First, it arbitrates between the requests to serve
the highest priority one. Second, it processes the request
by making a decision of the most efficient energy modes
of the routers. Eventually, it translates these decisions into
commands to the respective actuators in the NoC system, and
acknowledges the sender. Figure 2 depicts an abstract view of
NoC employing PANC - integrating the energy-savings schemes
(CG, PG, and DVFS) to efficiently control the NoC energy.

PANC signals the clock generator with the required clock mode
derived from the current NoC traffic. The clock generator then
provides NoC with the respective clock frequency, leading to
a frequency increase/decrease (DVFS). Moreover, as soon as
PANC detects an idleness state of certain routers, it signals
them with PCG ON messages (power/clock-gating on) in order
to gate their power (PG: using the power switch), and their
clock (CG: using clock-gating blocks).

Vdd

R0

CG

Vdd

CG

PG

PGPG

PG

R1

Vdd

R2

Vdd

R3

Clock
generator

NoC
Clock Freq.

(DVFS)

NoC

PCG_ON/PCG_OFF

CGCG

System
clock

Arbitration

Energy-mode
decision-
making

Actuation

Clock
mode

PANC

NoC Req/Rel

msg

Fig. 2: NoC with the PANC approach, employing the integrated
energy-savings schemes, PG, CG, and DVFS

In addition to that, PANC sends PCG OFF messages
(power/clock-gating off) to wake up all powered off routers and
activate their clock before it acknowledges a sender. For more
details about PANC functionality (in which PANC determines
when to apply what energy-savings scheme), and scalability,
the interested reader can consult the work of Kadeed et al. [5].

ACKNOWLEDGMENTS

This work has been funded by the German Research
Foundation (DFG) within the project ER168/32-1.

REFERENCES

[1] B. K. Daya and et al., “SCORPIO: a 36-core research chip demonstrating
snoopy coherence on a scalable mesh noc with in-network ordering,” in
ACM SIGARCH Computer Architecture News, vol. 42, no. 3. IEEE Press,
2014, pp. 25–36.

[2] A. Kostrzewa, T. Kadeed, B. Nikolić, and R. Ernst, “Supporting dynamic
voltage and frequency scaling in networks-on-chip for hard real-time
systems,” in 2018 IEEE 24th International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA). IEEE, 2018,
pp. 125–135.

[3] T. Kadeed, E. A. Rambo, and R. Ernst, “Power and area evaluation of a
fault-tolerant network-on-chip,” in System-on-Chip Conference (SOCC),
30th IEEE International. IEEE, 2017, pp. 190–195.

[4] T. Kadeed, S. Tobuschat, A. Kostrzewa, and R. Ernst, “Safe and efficient
power management of hard real-time networks-on-chip,” Integration, the
VLSI Journal, 2018.

[5] T. Kadeed, S. Tobuschat, and R. Ernst, “Integrated energy control for hard
real-time networks-on-chip,” in 2019 IEEE Real-Time Systems Symposium
(RTSS), 2019.

8

A Gem5 Multi-OS Mixed-critical Many-core
Simulation Model for Self-aware Systems

Eberle A. Rambo, Robin Hapka, Rolf Ernst
Institute of Computer and Network Engineering

TU Braunschweig
Braunschweig, Germany

{rambo,robinh,ernst}@ida.ing.tu-bs.de

Abstract—Mixed-critical systems are the natural evolution of
safety-critical embedded systems. They can make more efficient
use of the abundant computing power in modern architectures.
Despite the strong theoretical work on mixed-criticality and well-
developed analytical frameworks, simulation models have not
been developed at the same pace. This work presents a mixed-
critical, multiprocessing simulation environment with multi-OS
support developed in Gem5. The highly configurable tile-based
many-core architecture model with network-on-chip enables
the exploration and evaluation of self-awareness techniques for
mixed-criticality on an experimental hardware platform.

Index Terms—simulation, mixed-criticality, many-core, self-
awareness

I. INTRODUCTION

The Information Processing Factory (IPF) project has re-
cently introduced the abstraction of modern and future com-
plex multiprocessing architectures as self-aware information
processing factories: the IPF paradigm [1]–[3]. These factories
consist of a set of highly configurable resources, such as
processing cores and interconnects, whose use is monitored,
planned, and configured during runtime. Continuing with the
analogy, managing a factory requires multiple considerations,
such as efficiency, availability, reliability, integrity, and timing.
IPF conquers the complexity of managing such systems by
hierarchically decomposing the challenges. These are then
addressed by different mechanisms that co-exist in the factory.

To enable a flexible and fast experimentation and evaluation
with hardware-software co-design, we have derived a full-
system simulation model in Gem5 [4]. By composing new
and existing models, we created a multiprocessing platform
suitable for mixed-critical, self-aware systems. That requires
support for different operating systems (OSs) and real-time
operating systems (RTOSs) that co-exist in the platform,
architectural support for mixed-criticality, and a high degree
of configurability for self-awareness. This paper summarizes a
mixed-critical many-core simulation model for self-awareness
with multi-OS support.

II. THE SIMULATION MODEL

A. Overview of the Architecture
The simulation model consists of a tile-based many-core

architecture for mixed-critical real-time systems, as required
by the IPF paradigm [3]. Fig. 1 illustrates an instance of the
architecture, based on [5], which is composed of a number

We acknowledge financial support from the DFG Grant ER168/32-1.

Fig. 1. Overview of the modeled tile-based architecture, with a detailed tile.

of tiles connected to each other by a network-on-chip (NoC).
The platform size, i.e., the number of tiles and the number of
routers in the network are parameterizable. A tile is connected
to a NoC router by a network interface (NI), and up to
four tiles can be connected to the same router. Common in
academia, the regular 2D-Mesh is the default topology for
the NoC. The NoC model also supports irregular, custom
topologies, which are common in industry.

B. Tiles
Tiles can be complete systems containing one or more

cores in a cluster, interrupt controller, various high and low-
bandwidth peripherals, on-chip memories, off-chip memory
interfaces, and I/O interfaces. We distinguish different types
of tiles based on their purpose: processing tiles (PE tiles),
memory tiles (MEM tiles), and I/O tiles (IO tiles). The first
two tile types are depicted in Figure 1. Initially, the model has
a number of homogeneous PE tiles and one MEM tile.

Each PE tile consists of an ARMv7 core, a local scratchpad
memory (SPM), and peripherals connected to a tile-local
AMBA bus. The local bus is connected to the NI, which acts as
a gateway to the rest of the chip. The model supports multiple
cores in a tile and the number of cores is currently limited only
by components, such as the interrupt controller (ARM’s GIC-
400). The memory hierarchy can be customized as required:
with or without caches and with or without a local scratchpad
memory. The model with caches currently supports software-
based coherence. Hardware-based coherence for mixed-critical
real-time systems is an open problem, especially for NoC-
based ones, and therefore potential future work.

9

The MEM tile contains a read-only memory, a DDR mem-
ory controller, and a tile-local bus connecting them to the NI.

Tiles can be easily customized, a characteristic inherited
from Gem5 [4]. Peripherals, memory modules, and interfaces
can be added and modified as required. That enables the
exploration of mechanisms and architectural choices for self-
awareness in mixed-criticality. The model can be extended
to other Instruction Set Architectures (ISAs) depending on
Gem5’s support for full-system simulation with that ISA.
Moreover, existing features in Gem5, such as dynamic voltage
and frequency scaling (DVFS), are also supported.

All tiles are equipped with at least one NI, which is
connected to the tile-local bus. The communication with and
the access to resources and memories in other tiles is done
through the NI.

C. Network-on-chip (NoC)
The IDA NoC provides the connectivity between tiles and

resources in the system. Based on [5], the IDA NoC consists
of routers, NIs, and links. The NoC implements wormhole
switching, where variable-sized packets are composed of fixed-
sized flow control units (flits); virtual-channel flow control,
where flits transit through a number of virtual channels;
priority-based arbitration; and deterministic source routing,
where the route and virtual channel are defined in the NI.

1) Support for mixed-criticality: In order to make the
performance of tiles sufficiently independent from each other,
a requirement for mixed-criticality [3], [6], spatial isolation
and bounded temporal interference are provided by the NoC.
The spatial isolation is ensured by controlling the inter-tile
communication and access to shared hardware resources on
a whitelist basis: tiles can only communicate with other tiles
and access resources if they are allowed by a system controller.
That is implemented in the NoC routers, e.g., through priority-
based arbitration with virtual-channel flow control, and in the
NI through a memory protection unit with memory translation
and an interrupt unit, both introduced next.

2) Memory management: The access to remote resources
and memories is handled by the NI, which converts memory
bus transactions into NoC packets and vice versa in the
remote tile. Therefore, the NI features a memory protection
unit with memory translation based on [5], which maps tile-
local physical addresses to physical addresses on a remote
tile. Additionally, mapped addresses also have an associated
route and virtual channel that are used to configure the
associated NoC packets. The configuration of the NIs can be
done statically and modified dynamically by a trusted system
controller.

3) Support for interrupt-based communication: The NI also
features an interrupt interface that delivers interrupts to remote
tiles’ interrupt controllers. The configuration of this feature is
analogous to the NI’s memory unit, but instead of memory
addresses, it maps local and remote interrupt numbers.

III. THE SOFTWARE

A. Multi-OS support
The simulation model supports the execution of a platform

with multiple OSs. Currently, two RTOSs have been ported

to the platform: FreeRTOS and µC-OS II. Each tile has an
instance of an OS, resulting a multi-kernel setup. Future work
includes porting and supporting non-real-time, best-effort OSs.
Details on the use of multiple OSs in a mixed-critical, self-
aware system is available in [6].

B. Inter-tile Communication
For inter-tile communication, a message passing interface

(MPI)-compatible communication API has been created that
allows the communication across tiles and different oper-
ating systems. It makes use of the interrupt and memory
management features of the NoC for increased efficiency.
Our MPI implementation currently supports the point-to-point
communication subset of the MPI-3.1 standard.

C. Support for self-awareness
Self-awareness requires, among others, a high degree of

configurability both in software and hardware. Self-awareness
in a mixed-critical system must additionally handle constraints
and requirements of the safety-critical workload while op-
timizing the execution of best-effort workload. The current
model provides the functionality required by entities of a self-
aware IPF system. For instance, by allowing the reconfigura-
tion and repurposing of tiles, and the migration of tasks and
tiles. The inter-tile communication infrastructure supports the
reconfiguration of the system at runtime and keeps track of
migrated, communicating tasks. It operates in conjunction with
a system controller, responsible for the actual migration [3].

IV. SUMMARY

This paper summarized a mixed-critical many-core simu-
lation model for self-awareness with multi-OS support. The
work was developed in the context of the Information Pro-
cessing Factory (IPF) project, which currently researches self-
awareness for mixed-criticality. The simulation model extends
existing models in Gem5 while inheriting existing infrastruc-
ture and features, and enables the rapid experimentation and
hardware/software co-design.

REFERENCES

[1] N. Dutt et al., “Conquering MPSoC complexity with principles of a
self-aware information processing factory,” in Proceedings of the 11th
IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), ser. CODES’16, Pittsburgh,
Pennsylvania, Oct 2016.

[2] A. Sadighi et al., “Design methodologies for enabling self-awareness in
autonomous systems,” in Proceedings of Design, Automation and Test in
Europe Conference (DATE’18), March 2018.

[3] E. A. Rambo et al., “The information processing factory: A paradigm for
life cycle management of dependable systems,” in Proceedings of the
14th IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), ser. CODES’19, New
York, New York, Oct 2019.

[4] N. Binkert et al., “The Gem5 Simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, Aug. 2011.

[5] B. Motruk et al., “IDAMC: A many-core platform with run-time moni-
toring for mixed-criticality,” in 2012 IEEE 14th International Symposium
on High-Assurance Systems Engineering. IEEE, 2012, pp. 24–31.

[6] E. A. Rambo et al. (2019) The information processing factory: Organi-
zation, terminology, and definitions.

10

Runtime Architect: Link Performance Design to
Runtime Aspects

Adel Gasri
Link Software International

Tunis, Tunisia
adel.gasri@linkconet.com

Rafik Henia
Thales Research & Technology

Palaiseau, France
rafik.henia@thalesgroup.com

Laurent Rioux
Thales Research & Technology

Palaiseau, France
laurent.rioux@thalesgroup.com

Nicolas Sordon
Thales Research & Technology

Palaiseau, France
nicolas.sordon@thalesgroup.com

Abstract—Timing predictability is one of the most important
concerns in real-time systems. Today, timing predictability is
however challenged by the high complexity of modern real-time
systems, which is the consequence of the significant increase of
the number of implemented software functions and the required
computing and communication resources. Model-driven
technologies (e.g. design modelling and timing verification tools)
are considered as best adapted for the timing prediction of
complex real-time systems. However, there is a lack of solutions
ensuring that the model reflects the real system content and is
causally connected with it. In this context, we present a
demonstration of the Runtime Architect tool suite that permits to
system architects linking the system model with the system
runtime aspects. This allows setting up a continuous performance
engineering cycle between design and runtime, thus ensuring the
quality of the running system while reducing the design and
development efforts and costs. Runtime Architect encapsulates
the Time4Sys real-time platform in order to ease the integration
in any runtime, design or timing verification environment. A
demonstration on an industrial avionics use-case will be
presented to show the pertinence of our solution.

Keywords—real-time verification, runtime, performance
engineering, model-based design

I. INTRODUCTION

Electronic systems with real-time performance constraints
are found in many different application domains such as space,
automotive, railway, aerospace, medical monitoring and
imaging, industrial process control, robotics, etc. A common
trend amongst all these systems is the significant quantitative
(number of functions) and qualitative (required performance)
increase of the functions to be implemented in order to respond
to the growing needs for connectivity, automation, autonomy,
security, etc. Among the different activities related to the
development of real-time systems, Performance Engineering
(PE) is one of the most challenged by this trend: in order to
face the qualitative and quantitative increase of functions, it is
extremely important to make the best use of the available
computing and communication resources while ensuring that
the real-time constraints are met (in critical systems no risk can
be taken on timing aspects since they represent a high safety
concern, e.g. functions of the flight control computer must be
executed in time to ensure aircraft flight stability; in non-
critical systems timing delays may strongly impact the quality
of service, e.g. image glitches in video surveillance). This
ultimate objective calls for modern PE practices.

In PE, model-driven technologies such as tools for
performance design and timing verification seem best adapted
for this purpose and promise significant productivity gains,
which have been proven valid in several studies (e.g. reuse of
models in future developments, better understanding of the
real-time behavior through an abstract view focusing on timing
aspects, etc.). However, there remains a major problem
aggravated by the growing systems complexity: Does the
implemented system at runtime behave as designed? Without
some form of consistency guarantee, the relationship between
the system model and its implementation will be hypothetical,
and the above mentioned gains brought by the model-driven
technologies will be lost. As a consequence, one of the major
challenges today in the PE of real-time systems is the
integration of design models and runtime aspects. The timing
behavior at runtime has to be matched with the design in order
to identify the timing failures in design and deviations from the
real-time requirements.

In this perspective, we have developed the Runtime
Architect tool suite. It allows the architect performing a
continuous system PE cycle between design and runtime, thus
ensuring the quality of the running real-time system while
reducing the design and development efforts and costs, and
getting valuable feedback that can be used to boost the
productivity and provide lessons-learnt for future generations
of the product. In the demo session, we will present the tool
suite Runtime Architect and will run a demonstration using a
critical industrial real-time application from avionics: the flight
management system.

II. RUNTIME ARCHITECT

Runtime Architect incapsulates the MARTE [1] based open
source real-time platform Time4Sys [2]. By relying on the
Time4Sys design model and the Time4Sys trace model,
Runtime Architect automatically benefits from current but also
future connections to Time4Sys of the various existing model-
driven PE tools such as design tools (Capella [3], Papyrus [4],
Matlab [5], etc.), scheduling analysis and simulation tools
(Mast [6], Cheddar [7], SimEvents [8], etc.) as well as tracing
tools (Trace Compass [9], LTTng [10], CTF [11], etc.) all at
once. This guarantees high flexibility and add a valuable
agnostic character to Runtime Architect since it is possible to
easily integrate it in any runtime, any design and any
scheduling verification environment.

11

Fig. 1. Runtime Architect structure and interaction with design, scheduling

verification and tracing tools

Runtime Architect exploits design models of real-time
systems in Time4Sys, which typically include strong timing
requirements, in combination with collected runtime traces in
Time4sys originating from the system execution or
communication to achieve a continuous system PE cycle
between design and runtime. This is achieved through the
interaction of three modules that complement each other:
Runtime Parser, Runtime Trace Editor and Runtime Designer.
The design and the trace models in Time4Sys are at the core of
the modules. The structure of Runtime Architect, as well as its
interaction with design modelling, runtime tracing and timing
verification tools is illustrated in Figure 1. The combined use
of all three modules in connection with Time4Sys allows
integrating feedbacks on the real-time behavior obtained
through the processing of runtime traces directly into
system design, since it is the most suitable environment for
architects to take decisions, thus increasing the confidence that
the timing performances will meet the requirements.

A. Runtime Parser

It parses the runtime traces in Time4Sys to provide
valuable feedbacks on system execution to the architect. This
includes various numerical and graphical statistics for several
timing properties as well as the identification of performance
bottlenecks or timing errors encountered in the traces such as
deadline misses or buffer overloads. It also ensures consistency
between timing properties in runtime and design. This is done
by computing a mathematical model of the runtime
performance behavior of the system. This model is then
confronted to the one included in the Time4Sys design model.

B. Runtime Trace Editor

It is at the same time a graphical trace viewer and editor for
system execution/communication. It offers graphical
representations of common components and concepts building
together the real-time behavior of the system (processors,
tasks, functions, communication channels, blocking times, pre-
emptions, etc.). This allows monitoring runtime traces to
understand the timing behavior and identify performance
bottlenecks. It offers an interface to connect to any

analysis/simulation tool to graphically represent the
computed/simulated scheduling performance results. It also
offers the capacity to edit the displayed runtime traces with the
objective of exploring design alternatives based on the system
runtime behavior before investing time and efforts in re-
implementing and testing. E.g. it is possible to select any
graphical component in the displayed trace and modify its
timing characteristics such as increasing/decreasing the
duration of a function execution, shifting the transmission of a
frame on a bus or the activation of a task on a processor, etc.

C. Runtime Designer

It allows virtually searching for critical execution scenarios
for system performance, correcting timing errors if any, and
exploring design alternatives. For this purpose, Runtime
Designer interacts with the Runtime Trace Editor as well as the
Time4Sys system design model to interpret the edition of the
runtime traces by the architect. Based on that interpretation, it
re-computes the runtime trace, e.g. an increased execution
duration of a given task instance decided by the architect in
Runtime Trace Editor will make Runtime Designer rebuild the
whole runtime trace taking in consideration the tasks priorities
as defined in the Time4Sys design model. Another example: by
shifting the activations of some tasks in Runtime Trace Editor,
the architect may distribute the execution load of the tasks over
the time, thus reducing their respective response times.

Once an explored correction or design alternative is
validated by the architect, he can decide to integrate the
modified timing properties in the Time4Sys design model.
Note that the correction/exploration performed using Runtime
Designer is specific to the observed timing behaviour in the
runtime traces. It must be complemented with an overall
system timing verification and optimization activity performed
using any scheduling analysis or simulation tool connected to
Time4Sys as illustrated in Figure 1.

III. DEMONSTRATION

We will present a demonstration using a use-case from the
avionic domain: the Flight Management System (FMS). The
FMS is a critical application embedded in the aircraft in charge
of computing the trajectory along a flight plan during the flight,
while minimizing fuel consumption and time to arrival. It term
of complexity, it is representative of real industrial applications
(various activation patterns, computing intensive parts, mixed
criticality features, etc.).

REFERENCES
[1] Modeling and Analysis of Real-time and Embedded systems:

https://www.omg.org/omgmarte/

[2] Time4Sys: https://www.polarsys.org/time4sys/

[3] Capella://www.polarsys.org/capella/

[4] Papyrus: https://www.eclipse.org/papyrus/

[5] Matlab: https://www.mathworks.com/products/matlab.html

[6] Modeling and Analysis Suite for Real-Time Applications:
https://mast.unican.es/

[7] Cheddar: http://beru.univ-brest.fr/~singhoff/cheddar/

[8] SimEvents: https://www.mathworks.com/products/simevents.html

[9] Trace Compass: https://www.eclipse.org/tracecompass/

[10] Open source tracing framework for Linux: https://lttng.org/

[11] The common trace format: https://diamon.org/ctf

12

toki: A Build- and Test-Platform for Prototyping
and Evaluating Operating System Concepts in

Real-Time Environments
Oliver Horst

fortiss GmbH – Research Institute of the Free State of Bavaria
Guerickestr. 25, 80805 Munich, Germany

Email: horst@fortiss.org

Uwe Baumgarten
Technical University of Munich

Department of Informatics, Germany
Email: baumgaru@in.tum.de

Abstract—Typically, even low-level operating system concepts,
such as resource sharing strategies and predictability measures,
are evaluated with Linux on PC hardware. This leaves a large
gap to real industrial applications. Hence, the direct transfer of
the results might be difficult. As a solution, we present toki, a
prototyping and evaluation platform based on FreeRTOS and
several open-source libraries. toki comes with a unified build-
and test-environment based on Yocto and QEMU, which makes
it well suited for rapid prototyping. With its architecture chosen
similar to production industrial systems, toki provides the ground
work to implement early prototypes of real-time systems research
results, up to technology readiness level 7, with little effort.

I. INTRODUCTION

Currently, most applied real-time systems research prototypes
are developed and evaluated on top of Linux on PC hardware.
This leaves a large gap between real industrial applications
in that field and the prototype. In case of low-level operating
system (OS) concepts concerning, e.g., context switch times,
resource sharing, intra-node communication, and predictability,
the drawn conclusions could even be void due to the completely
different nature of the industrial platform. Furthermore, we
see a lack in practical examinations of which latency and how
much temporal predictability, in the sense of [1], is achievable
with certain configurations (e.g., software architectures and
predictability measures). Hence, we see the need to ease
constructing early prototypical implementations of research
results on relevant hardware in relevant environments.

On the one hand, Linux seems to be a good choice here. It
is available for a wide variety of hardware platforms, provides
excellent third-party library support, and can fulfill real-time
requirements to some extent. However, it is a complex task
to configure Linux in a way that its influence on low-level
performance benchmarks is negligible or at least predictable.
Moreover, integrating own concepts into the Linux kernel
requires detailed knowledge about the kernel sources and its
concepts. Hence, even though specialized distributions, such as

This work was supported by the European Union (EU) under the Horizon
2020 program, projects TAPPS (Trusted Apps for open CPSs) and 5GCroCo
(5G Cross Border Control), and the German Federal Ministry of Economics
and Technology (BMWi) under the Smart Service World program, project
PASS (Platform for Automotive Apps Guaranteeing Security and Safety).

LITMUSRT [2], can drastically reduce the configuration effort,
the integration complexity remains as main issue.

Industrial-grade real-time operating systems (RTOSs), on the
other hand, provide considerably less influence on performance
measurements, but at the costs of usability. They are either
delivered as minimal systems, like FreeRTOS [3], which lack
tooling support and provide not much more than a scheduler, or
as sophisticated platforms tailored to specific industrial fields,
such as AUTOSAR [4], which come along with royalty fees,
tooling, and complex, configurable software stacks.

As an exception, the GENODE OS framework [5] comes
with toolchains for several hardware platforms and provides a
convenient, production ready RTOS. Unfortunately, GENODE’s
overall orientation to safety and security severely hinders rapid
prototyping. Its micro-kernel based design requires that all
adaption and changes to the OS obey the strict isolation mantra,
which is conceptually challenging and time consuming.

Therefore, we see the need for a minimal, yet flexible
real-time system framework that provides comfort similar to
commercial platforms, but comes without a complex software
architecture and strict inherent design concepts. Ideally, the
framework should be fully based on open-source software,
provide an integrated standard C-library, a target toolchain,
configuration tools, and an emulation environment for testing.
A plus would be the possibility to safety certify the system.

Accordingly, we present toki, a flexible and configurable OS
framework, close to production industrial systems, but without
the hassle of complex software architectures.

II. THE BUILD- AND TEST-PLATFORM TOKI

toki, Japanese for “when an action occurs”, is a build- and
test-environment constructed around FreeRTOS or SafeRTOS
[6], respectively. toki’s main goal is to compose an easy to
use rapid prototyping platform to develop and evaluate new
operating-system- and intra-node-communication-concepts for
cyber-physical systems on commodity microcontrollers. There-
fore, toki combines the following open-source projects into
the unified architecture and build-system illustrated in Fig. 1:
FreeRTOS [3] (v10.0.0), newlib [7] (v3.0.0), libXil / libXilPm
[8] (v2019.1), and lwIP [9] (v2.0.3). These base components

13

toki - one instance per core

gcc-cross

CMake
toolchain�le

CMake

SD card
image

Yocto

toki-con�g
tool

toki deploym
ent con�guration

TACLe
Bench

Demo
App

Xilinx ZCU102 – Appl. Proc. 0-3

syscall interface

newlib lwIP

FreeRTOS

libXil / libXilPm

memguard

STM tracing

HST

ESFree

QEMU

(1)
(2)
(3)
(4)
(5)
(6)

Figure 1. Sketch of toki’s architecture and build-system, showing the included
components (3,4), differentiated among integrated (3) and newly created (4)
components, and their relations. Given a deployment configuration (1), Yocto
(2) builds all included components and collates them into a SD card image
(5), which can be deployed and tested on the hardware or in QEMU (6).

are supplemented by the ESFree Scheduling Library [10], HST
User Mode Scheduler [11], and TACLe benchmarks [12].

These components were chosen under the following aspects:
(i) the simplicity to modify and extend their code base, (ii)
their ability to closely mimic the software stacks of comparable
industrial systems, (iii) the flexibility of their design regarding
rapid prototyping, and (iv) compatible software licenses.

At platform-level, the toki build-system (Fig. 1) utilizes
Yocto [13] to provide a self-contained build-environment that
builds all components of toki together with their dependencies
(e.g., a GCC cross-compiler). At project-level, we ensured
proper include prefixes for all components, by restructuring
their sources and adding a CMake [14] based build-system,
where needed. This reorganization is conducted by a dedicated
Python script, to allow nearly automatic upstream pulls.

To allow software developers to benefit from the code insight
and debugging capabilities of their favorite IDE, single-core
deployments of toki can be built by CMake. Production-ready
images of multi-core deployments, on the other hand, can
only be built by Yocto. toki deployment configurations, in
general, are specified either manually or with assistance of the
toki-config tool, and guide Yocto in the build process.

Besides the changes required for the build-environment, we
contribute the following new features to FreeRTOS on ARMv8:
asymmetric multiprocessing boot support, a newlib syscall
interface, a memguard [15] implementation, and software-
tracing support via ARM’s system trace macrocell [16].

The toki build-environment is seamlessly integrated with a
virtual test-environment. Hence, all images built by Yocto can
either be tested on the real hardware or its emulated counterpart.
The emulation is handled by a tailored QEMU [17], built by
Yocto, which enables a fully virtual development cycle.

Currently, toki is solely tested and ready-to-run on the
Xilinx Zynq UltraScale+ MPSoC platform [18], a contemporary
ARMv8 multi-core SoC with an integrated FPGA. This
platform was selected, because of (i) Xilinx’s extensive software

support for it, including a bare-metal driver kit, and (ii) the
included FPGA, which allows us to increase the accuracy of
our performance evaluations. Nevertheless, toki was designed
with portability in mind; hence, it can easily be ported to other
target platforms, e.g., the STM32Cube by STmicro [19].

In the future, we plan to conduct measurements to compare
the interrupt handling latency of toki with other software stacks
and extend toki with FreeRTOS+POSIX [20], a communication
middleware, and precision time protocol (PTP) support.

Feel free to try out the latest version of toki, by downloading
it from: https://git.fortiss.org/toki

III. DEMONSTRATION

We will demonstrate toki through two showcases:
1) A video of the TAPPS project’s [21] final demonstrator,

showing the on-the-fly installation of an application into
the real-time critical control path of the throttle control
of a production electric motorcycle, realized with toki.

2) A live-demo of toki’s configuration, build, simulation, and
deployment cycle on the example of memory benchmarks
deployed to distinct cores and regulated by memguard.

The first showcase focuses on the real-time capabilities and
applicability to industrial use-cases, and the second on the
configuration flexibility and measurement capabilities of toki.

ACKNOWLEDGMENT

We would like to thank all contributors to toki for their
work, namely: Martin Jobst, Johannes Wiesböck, Dorel Coman,
Ulrich Huber, Mahmoud Rushdi, Tuan Tu Tran, Firas Trimech,
Raphael Wild, Andreas Ruhland, and Dhiraj Gulati.

REFERENCES

[1] B. Sun et al., “Definitions of predictability for cyber physical systems,”
J. of Syst. Architecture - Embedded Syst. Des., vol. 63, pp. 48–60, 2016.

[2] J. M. Calandrino et al., “LITMUSˆRT : A Testbed for Empirically
Comparing Real-Time Multiprocessor Schedulers,” in 27th IEEE Int.
Real-Time Syst. Symp. (RTSS), Dec. 2006, pp. 111–126.

[3] https://www.freertos.org.
[4] AUTOSAR, “Classic platform release 4.3.1,” AUTOSAR Std., Dec. 2017.
[5] N. Feske, GENODE Foundations – Operating System Framework 19.05.

GENODE Labs, 2019.
[6] https://www.highintegritysystems.com/safertos/.
[7] https://sourceware.org/newlib/.
[8] https://github.com/Xilinx/embeddedsw.
[9] https://savannah.nongnu.org/projects/lwip/.

[10] R. Kase, “Efficient Scheduling Library for FreeRTOS,” Master’s thesis,
KTH Information and Communication Technology, 2016.

[11] F. E. Páez et al., “FreeRTOS user mode scheduler for mixed critical
systems,” in 6th Argentine Conf. on Embedded Syst. (CASE), Aug. 2015.

[12] H. Falk et al., “TACLeBench: A Benchmark Collection to Support Worst-
Case Execution Time Research,” in 16th Int. Workshop on Worst-Case
Execution Time Analysis (WCET), 2016, pp. 2:1–2:10.

[13] https://www.yoctoproject.org.
[14] https://cmake.org.
[15] H. Yun et al., “MemGuard: Memory bandwidth reservation system for

efficient performance isolation in multi-core platforms,” in 19th IEEE
Real-Time and Embedded Technol. and Appl. Symp. (RTAS), Apr. 2013.

[16] CoreSight System Trace Macrocell – Technical Reference Manual,
r0p1 ed., ARM Limited, Dec. 2010.

[17] https://www.qemu.org.
[18] https://www.xilinx.com/products/silicon-devices/soc/

zynq-ultrascale-mpsoc.html.
[19] https://www.st.com/content/st com/en/stm32cube-ecosystem.html.
[20] https://www.freertos.org/FreeRTOS-Plus/FreeRTOS Plus POSIX/.
[21] http://www.tapps-project.eu.

14

Modelling and Timing Analysis of Real-time
Applications on Evolving Automotive E/E

Architectures using Rubus-ICE
Alessio Bucaioni∗, John Lundbäck‡, Mattias Gålnander‡, Kurt-Lennart Lundbäck‡,

Mohammad Ashjaei∗, Matthias Becker†, Saad Mubeen∗
∗ Mälardalen University, Västerås, Sweden
‡ Arcticus Systems, Järfälla, Sweden

† KTH Royal Instituite of Technology, Stockholm, Sweden
∗{alessio.bucaioni, mohammad.ashjaei, saad.mubeen}@mdh.se, †mabecker@kth.se

‡{john.lundback, mattias.galnander, kurt.lundback}@arcticus-systems.com

Abstract—The automotive E/E architectures are evolving from
the traditional distributed architectures to upcoming consolidated
domain architectures and possibly future centralised architec-
tures. This paper demonstrates modelling and timing analysis
of real-time embedded systems on contemporary automotive E/E
architectures using the Rubus-ICE tool suite. The Rubus concept
and tool suite, developed and evolved based on close academic-
industrial collaboration, have been used in the automotive in-
dustry for over 25 years. The paper also demonstrates recent
extensions and discusses proposals to support the modelling and
timing analysis of the systems on future E/E architectures.

I. INTRODUCTION
Automotive software has been evolving and growing in

complexity at a staggering pace for the past couple of
decades [1]. The advanced features in contemporary and
upcoming automotive software systems, e.g., Advanced Driver
Assistance Systems (ADAS), require high levels of com-
putational power and high data-rate low-latency on-board
communication that is well beyond the capacity of tradi-
tional Electronic Control Units (ECUs) and on-board net-
works respectively. Consequently, the traditional distributed
Electrical/Electronic (E/E) architectures began to pave way for
the upcoming advanced consolidated domain and centralised
architectures [2], [3]. The progression and evolution of the
automotive E/E architectures is depicted in Fig. 1.

The advanced automotive E/E architectures are envisioned
to leverage powerful ECUs in the form of heterogeneous com-
puting platforms (e.g., containing CPUs, GPUs and FPGAs)
that are connected by high-bandwidth and low-latency on-
board backbone networks [1]. However, model-based develop-
ment [4], [5] of predictable real-time embedded software on
these platforms opens up several new challenges, including
the modelling of embedded software enriched with timing
properties, extraction of timing models from the software
architectures, supporting end-to-end timing analysis of the
software architectures, automatically generating code from
the timing verified software architectures, and providing a
predictable run-time environment.

This demo will present the model-based software develop-
ment process (mainly modelling, timing analysis and synthe-
sis) for real-time embedded systems on distributed automotive
E/E architectures using the Rubus-ICE tool suite1. Rubus-

1Rubus-ICE Integrated component model Development Environment,
http://www.arcticus-systems.com

ICE has been used in the automotive industry for over 25
years by several OEMs and Tier-1 companies (e.g., Volvo,
BAE Systems, Hoerbiger, Knorr Bremse, BorgWarner, among
others) for model-based development of predictable real-time
embedded systems. The demo will also showcase recent
extensions in Rubus-ICE to support the modelling of these
systems on domain E/E architectures. In addition, the demo
will present the ongoing challenges concerning the support
for modelling and timing analysis of these systems on the
upcoming and future centralised automotive E/E architectures.

Fig. 1. Support for model-based development of real-time embedded systems
in Rubus-ICE with the progression of automotive E/E architectures.

II. MODELLING AND TIMING ANALYSIS WITH RUBUS-ICE

A. Distributed E/E Architectures

Rubus-ICE provides a full-fledged model-based develop-
ment support for real-time systems on distributed E/E architec-
tures. The development support includes modelling of software
architectures and timing information, end-to-end timing analy-
sis of the software architectures, automatic generation of tim-
ing verified code from the software architectures, deployment
and execution on predictable run-time environment. Fig. 2

15

NetworkNode

Clock
Input

trigger port
Output

trigger port

Input data port Output data portSoftware Circuit
Actuation

signalSensor signal

Trigger
terminator

ActuatorSensor

Timing constraint

(Behavior)

Timing
Analysis
Engines

Ericsson research Day 20101125

The development context

System Architecture

Analysis
FrameworkDeveloper

Run-time system

Automatic
translation

Synthesis

Designs

Execute

Analysis
results

Core_0 Core_1Partition_1

Partition_2

Core_2

Fig. 2. Example of software development for real-time embedded systems on various Automotive E/E architectures using Rubus-ICE.

shows a screenshot of an example real-time system modelled
and analysed on a distributed automotive E/E architecture.

B. Domain E/E Architecture
Domain E/E architectures employ more powerful processing

units for replacing the constellation of single-core ECUs em-
ployed in contemporary distributed E/E architectures. Rubus-
ICE currently supports modelling of software architectures and
expressing timing information on the software architectures of
real-time systems that are deployed on these architectures. For
example, Fig. 2 shows the model of a software architecture of
a real-time system that is deployed on a tri-core node with
multiple partitions per core. The support for timing analysis
and predictable run-time support for real-time systems on these
architectures is an ongoing work.

C. Centralised E/E Architectures
The shift towards centralised E/E architectures requires

integration of heterogeneous software (with respect to work-
loads, activation semantics, data-flow semantics, real-time
requirements and safety requirements [6]) on heterogeneous
hardware comprising of certified traditional processors and
general-purpose high-performance processors with accelera-
tors. Rubus-ICE currently supports the specification of hetero-
geneous software with various types of real-time properties
and requirements, safety requirements and criticality levels
(different Automotive Safety Integrity Levels (ASILs) A to
D according to the ISO 26262 functional safety standard
for road vehicles), activation semantics (time triggered, event
triggered), data-flow semantics (synchronous, independent ac-
tivation, task chains) and workloads. This demo will also
present and discuss some of our recent proposals for enriching
Rubus-ICE with fine-grained modelling elements that allow
to model heterogeneous computing platforms, e.g., the new
modelling elements that are marked in red in Fig. 3.

III. SUMMARY

Automotive E/E architectures are steadily evolving. With
that, the corresponding design flow is evolving alongside. This

paper demonstrates modelling and timing analysis of real-time
embedded systems on contemporary automotive E/E archi-
tectures using the Rubus-ICE tool suite. In addition, recent
advancements that address challenges of future architectures
are demonstrated.

Fig. 3. Proposed new elements for modelling and specifying timing
information on heterogeneous computing platforms.

Acknowledgment: This work is supported by the Swedish
Knowledge Foundation (KKS) through the projects A-CPS and
HERO, and by the Swedish Governmental Agency for Innova-
tion Systems (VINNOVA) through the projects PANORAMA
and DESTINE. The authors thank the industrial partners
Arcticus Systems and Volvo Group for their valuable inputs.

REFERENCES
[1] L. Lo Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances

and trends in on-board embedded and networked automotive systems,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 2, 2019.

[2] Roland Berger, Consolidation in Vehicle Electronic Architectures, In
Think: Aact, Jul., 2015. Available at: https://www.rolandberger.com/en/
Publications/pub consolidation in vehicle electronic architectures.html.

[3] H. Zinner, J. Brand, D. Hopf, Automotive E/E Architecture evolution and
the impact on the network, IEEE802 Plenary, 802.1 TSN, Mar. 2019,
Continental AG, available at: http://ieee802.org/1/files/public/docs2019/
dg-zinner-automotive-architecture-evolution-0319-v02.pdf.

[4] G. T. Heineman and W. T. Councill, “Component-based software engi-
neering: putting the pieces together,” Component-based software engi-
neering: putting the pieces together, pp. 33–48, 2001.

[5] S. Sendall and W. Kozaczynski, “Model transformation: The heart and
soul of model-driven software development,” Software, IEEE, vol. 20,
no. 5, pp. 42–45, 2003.

[6] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and M. Wolf, “Fu-
ture automotive systems design: research challenges and opportunities:
special session,” in Proceedings of the IEEE International Conference on
Hardware/Software Codesign and System Synthesis, 2018, p. 2.

16

	MoFi: Environment-Independent Device-Free Human Motion Detection via WiFiXi Chen, Hang Li, Chenyi Zhou, Xue Liu, and Gregory Dudek
	Polygraph Tool Suite: Configuration and Conformity Validation for Data Flow Based Real-Time SystemsShuai Li, Matteo Morelli, Ansgar Radermacher, Jérémie Tatibouët, Pauline Deville, Arnault Lapitre, Sébastien Gérard, Chokri Mraidha
	LiteOS for Intermittent ComputingNan Guan, Qiulin Chen
	A Comprehensive Framework for Energy Management of Hard Real-time Networks-on-ChipThawra Kadeed, Rolf Ernst
	A Gem5 Multi-OS Mixed-critical Many-core Simulation Model for Self-aware SystemsEberle A. Rambo, Robin Hapka, Rolf Ernst
	Runtime Architect: Link Performance Design to Runtime AspectsAdel Gasri, Rafik Henia, Laurent Rioux, Nicolas Sordon
	toki: A Build- and Test-Platform for Prototyping and Evaluating Operating System Concepts in Real-Time EnvironmentsOliver Horst, Uwe Baumgarten
	Modelling and Timing Analysis of Real-time Applications on Evolving Automotive E/E Architectures using Rubus-ICEAlessio Bucaioni, John Lundbäck, Mattias Galnander, Kurt-Lennart Lundbäck, Mohammad Ashjaei, Matthias Becker, Saad Mubeen

