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Background & Motivation

> hybrid multi-OS system (HMOS):
Integrating components with different levels £
of criticality on one physical platform for
optimizing cost, space, weight, heat
generation and power consumption.

»  Examples:

»  AUTOSAR 4.0+ -- ECUs (Electronic Control Units) , ADAS (Advanced Driver-
Assistance System) and IVIS (In-Vehicle Information System) on a vichle

> ARINC 653 -- flight control systems, environment control systems, and amu
sement syste-ms on modern aircraft
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Background & Motivation

» Consolidation Method

> Virtualization: bad efficiency and predictability

» Hardware Supported Isolation: better performance
»  Simplest Form

> hybrid dual-OS system (HDOS)

» RTOS +GPOS
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Background & Motivation

> Significant Effect of Inter-operation for HMOS
> All sides get functions and performance enhanceM
> One plus one is greater than two

»  Example

» From inter-operation, the ECU cluster in the RTOS can
acquire abundant functionalities (fault logs, Cloudside Al
decision) from the VIS in the GPOS.

» Communication is the foundation of inter-operation
> Security/safety and efficiency (time predictability)

»  RPC is the fundamental mechanism of communication
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Background & Motivation

»  Current optimizations for RPC fail to satisfy time predictability
> mostly designed for virtualization systems

> simplify under protocol stack, use shared-memory
(XenLoop, MemPipe )

» straightforward RPC with hardware assistants (XENRPC,
SafeG)
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Review of TZDKS

Normal World Secure World

Normal App

TZAPI Library

Monitor
Mode

ARM Trustzone based SoC
IDesign Idea: combines strong points of dual-kernel and virtualization by

utilizing TrustZone technology

[Normal world stack: GPOS (Linux) and applications.
1Secure world stack: monitor module, RTOS (ucOSIl) and RT tasks.

JUse open source project *Trusted firmware’ as foundation.
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PROBLEM STATEMENT

» Mainly concern RG-RPC: RTOS =2 GPOS
» An abstracted process of RG-RPC:
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PROBLEM STATEMENT

»  Efficiency

» Three main reasons make the time predictability
difficult. GPOS low priority, RPC service not
deterministic, lack preemption for RPC.

> Security

» For safety, each communication must not lead to or
propagate hazards and faults.

» For security, a malicious task can not threat other
OSs or get private information through a deliberate
message.
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Design Philosophy
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Efficiency Design of RTRG-RPC

Requrest | 17 RTRG-RPC Process

Schedule _ P — “
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GPOS run
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1/ Event/Data \\-\ T //. S s A
’ ‘ ( erviced by
\\ /} RPC GQ { |
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Other task
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> Three main mechanisms for time predicabillity:
> priority-swapping
> SGI (Software Generate Interrupt) messages transforming

> interrupt handler RPC serving
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Efficiency Design of RTRG-RPC

> Priority-Swapping Enhanced Ildle-Scheduling Policy

» ldle-scheduling plus 1G. add another RT task 15 serving as a GPOS
container. Tg owns a very low original but variable priority.

> Priority-Swapping. When a regular task 71, has triggered a RG-RPC call, it
turns to sleep and exchange its priority with 1G.

> Timeout-exit strategy for 1G. A timeout value can be set for T1,. In case of no
RPC returning, 15 will be suspended and all priorities will be restored.
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Tc (GPOS)
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Tasks runtime figure for 11, 72, and T3, where 71 has a RT-RPC action. The priorities
are ordered as T 1< T 2< T .

(D: idle-scheduling before this time then T sarrives

2): normal schedule 3 ®): preemption @ (70): end of preemption

(®): T 1evoke the RPC and sleep, then T ¢ takes priority of T 1and runs

(8): RPC completes and T 1is awake (9): idle-scheduling (0: T »arrives




Efficiency Design of RTRG-RPC

» RTRG-RPC Commnication Path

»  Event Path: software interrupt is chosen as the event method for RTOS.
RPC service notifies GPOS by a SMC call directly.

»  Data Path:

> shared memory
> a request pool and an answer pool

> pool-head for maintenance. Index links to the slot number, value remarks the RPC
priority

> minimum prinlil /tha hinhact nriaritu)
Normal World Secure World

G ROS

T Shared
Service Memory 1<
(Data Path)
SGI(Event Path)
Turstzone-enabled Platform




Efficiency Design of RTRG-RPC

» RTRG-RPC Service implementation in GPOS

> interrupt handler serves RG-RPC in the GPOS kernel

> Considering the system efficiency affected by long hard-irq critical region,
we can place the RPC service into a high priority soft-irqg

> make the service time determinable by increasing the priority of the interrupt
related to RG-RPC, and by simplifying the procedure of RPC service into a
kernel module

»  GICv3 hardware guarantees that the unmasked interrupt with the highest
priority will be firstly sent to the CPU core in bounded time.
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Security Design of RTRG-RPC

» three types of threat are considered

»  safety threat: no side-effect of running, switch and restoring of any OS

> RPC no-return. time-out exit mechanism
> RPC wrong return. solved by the protocols or ways on the upper soft layer

> wrong order of RPCs. task ID attached in each RPC solves it. One time one RPC
> malicious code threat: prevent the executing of code in the buffer memory
»  leverage the DEP (Data Execution Protect) to forbid the code executing

» DoS attack threat

> set up a counter in the RPC service handler of RTOS to test the frequency of calling
from GPOS

> If the calling frequency exceeds a predefined threshold, RTOS will deprive some
execution ticks from GPOS
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Evaluation

» Experimental Platform

»  ARMv8 Foundation Fast-Model Platform

»  FFP, version FM000-KT-00035-r11p1-24rel2

> quad-core Cortex-A53 CPU

»  2GB RAM memory

> peripherals (Watchdog timer, Real-time timer, and Power controller )

> secure pe- ripherals (Real-time clock, Trusted watchdog, Random number
generator)

»  We omit the service code in GPOS so that the service returns a
SMC message immediately without any business function.

> Two metrics were evaluated:
€ Latency Predictability and Distribution

€ Latency Comparison
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Evaluation

» Latency Predictability and Distribution
» There are three periodic tasks 7, 7, , 7, in RTOS and only 1 requires RPC.

» RTOS is schedulable under FPS policy. total load less than 69%,
UnixBench as a payload in GPOS

> In the first experiment, r owns highest priority. RPC from 7 for 450000 times
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» all RPCs complete in 8000 cycles, and only 3 calls exceed 6000 cycles.
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Evaluation

» Latency Predictability and Distribution

> In the second experiment, consider the preemption by tasks with higher
» assign the lowest priority to 1, and test the latency of RPC from 1

» comparison of maximum, minimum, average latency, and the mean-square
error of latency for RTRG-RPC

TABLE 1
RTRG-RPC LATENCY IN DIFFERENT PRIORITIES (UNIT: CYCLES)

Max Min  Average MSE

Highest Priority 8987 2037 2079.3 176.1
Lower Priority 179463 2036 2114.8 1267.2

> the maximum latency is significantly increased

» shows that RTRG-RPC scheme does not violate priority scheduling and is still
predicable in a lower priority
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Evaluation

» Latency Comparison

» implement another two RPC policies for comparison

»  TRG-RPC: traditional RPC method without any real-time consideration

» ITRG-RPC: enhanced version of TRG-RPC by adding the event path model and
GPOS service model of RTRG-RPC

TABLE 11
LATENCY COMPARISON FOR THREE RG-RPCS (UNIT: CYCLES)
Max Min Average MSE
RTRG-RPC 6867 2043 2078.4.3 95.8
ITRG-RPC 372330 2298 64485 .4 108405

TRG-RPC 50497874 49798712 49911274 1235735

»  RTRG-RPC owns much higher efficiency and better predictability comparing to
TRG-RPC and ITRG- RPC

> Rapid Service in GPOS do more significant help to the efficiency than Priority -
Swapping

» link in the GPOS is most crucial
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Conclusions & Future Work

this paper verifies the feasibility of obtaining a real- time service from
a GPOS

Time predictability of RTRG-RPC is achieved by three mechanisms:
SGI| message transforming, interrupt handler RPC serving, and
priority-swapping

a number of issues of details (such as cache miss and lock waiting,
etc. ) within the GPOS have been ignored. Our next plan is to
address these issues and to extend the system model to a distributed
multi-core platform
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