
Work-In-Progress: Real-Time RPC for Hybrid
Dual-OS System

Pan Dong, Zhe Jiang, Alan Burns, Yan Ding, Jun Ma

‣ Background & Motivation
‣ Problem Statment
‣ Design Philosophy
‣ Experimental Evaluation

‣ Conclusions

‣ Background & Motivation
‣ Problem Statment
‣ Design Philosophy
‣ Experimental Evaluation

‣ Conclusions

Background & Motivation
‣ hybrid multi-OS system (HMOS):

Integrating components with different levels
of criticality on one physical platform for
optimizing cost, space, weight, heat
generation and power consumption.

‣ Examples:
‣ AUTOSAR 4.0+ -- ECUs (Electronic Control Units) , ADAS (Advanced Driver-

Assistance System) and IVIS (In-Vehicle Information System) on a vichle

‣ ARINC 653 -- flight control systems, environment control systems, and amu
sement syste-ms on modern aircraft

Background & Motivation
‣ Consolidation Method
‣ Virtualization: bad efficiency and predictability
‣ Hardware Supported Isolation: better performance

‣ Simplest Form
‣ hybrid dual-OS system (HDOS)
‣ RTOS +GPOS

Dual-kernel System
Hardware

Virtualization System

Background & Motivation

‣ Significant Effect of Inter-operation for HMOS
‣ All sides get functions and performance enhancement
‣ One plus one is greater than two

‣ Example
‣ From inter-operation, the ECU cluster in the RTOS can

acquire abundant functionalities (fault logs, Cloudside AI
decision) from the IVIS in the GPOS.

‣ Communication is the foundation of inter-operation
‣ Security/safety and efficiency (time predictability)
‣ RPC is the fundamental mechanism of communication

Background & Motivation

‣ Current optimizations for RPC fail to satisfy time predictability
‣ mostly designed for virtualization systems
‣ simplify under protocol stack, use shared-memory

(XenLoop, MemPipe)
‣ straightforward RPC with hardware assistants (XENRPC,

SafeG)

Review of TZDKS

• Design Idea: combines strong points of dual-kernel and virtualization by
utilizing TrustZone technology
• Normal world stack: GPOS (Linux) and applications.
• Secure world stack: monitor module, RTOS (μcOSII) and RT tasks.
• Use open source project 'Trusted firmware' as foundation.

‣ Background & Motivation
‣ Problem Statment
‣ Design Philosophy
‣ Experimental Evaluation

‣ Conclusions

PROBLEM STATEMENT
‣ Mainly concern RG-RPC: RTOS  GPOS
‣ An abstracted process of RG-RPC:
① Issuing RPC request
② Scheduling&switching of RTOS
③ GPOS executing
④ Another scheduling&switching
⑤ Return of RPC

‣ We define them as：

‣ TI, TSS1, TG, TSS2, TR

PROBLEM STATEMENT
‣ Two aspects should be taken into account in the design
‣ Efficiency
‣ Three main reasons make the time predictability

difficult. GPOS low priority, RPC service not
deterministic, lack preemption for RPC.

‣ Security
‣ For safety, each communication must not lead to or

propagate hazards and faults.
‣ For security, a malicious task can not threat other

OSs or get private information through a deliberate
message.

‣ Background & Motivation
‣ Problem Statment
‣ Design Philosophy
‣ Experimental Evaluation

‣ Conclusions

Design Philosophy

R T O S ：
switch GPOS
on

G P O S ：
Before service
， sw i t ch on
RPC service

RPC Server：
s e r v i c e
priority

GPOS：After
s e r v i c e ，
inform RTOS

R T O S ：
switch caller
on

minimizing of
preemptions of lower

priority entities

‣ Three main mechanisms for time predicability:
‣ priority-swapping
‣ SGI (Software Generate Interrupt) messages transforming
‣ interrupt handler RPC serving

Efficiency Design of RTRG-RPC

Efficiency Design of RTRG-RPC
‣ Priority-Swapping ： Enhanced Idle-Scheduling Policy

‣ Idle-scheduling plus τG. add another RT task τG serving as a GPOS
container. τG owns a very low original but variable priority.

‣ Priority-Swapping. When a regular task τi has triggered a RG-RPC call, it
turns to sleep and exchange its priority with τG.

‣ Timeout-exit strategy for τG. A timeout value can be set for τi. In case of no
RPC returning, τG will be suspended and all priorities will be restored.

Efficiency Design of RTRG-RPC
‣ RTRG-RPC Commnication Path

‣ Event Path: software interrupt is chosen as the event method for RTOS.
RPC service notifies GPOS by a SMC call directly.

‣ Data Path:
‣ shared memory

‣ a request pool and an answer pool

‣ pool-head for maintenance. Index links to the slot number, value remarks the RPC
priority

‣ minimum prio[i] (the highest priority)

Efficiency Design of RTRG-RPC
‣ RTRG-RPC Service implementation in GPOS

‣ interrupt handler serves RG-RPC in the GPOS kernel

‣ Considering the system efficiency affected by long hard-irq critical region,
we can place the RPC service into a high priority soft-irq

‣ make the service time determinable by increasing the priority of the interrupt
related to RG-RPC, and by simplifying the procedure of RPC service into a
kernel module

‣ GICv3 hardware guarantees that the unmasked interrupt with the highest
priority will be firstly sent to the CPU core in bounded time.

Security Design of RTRG-RPC
‣ three types of threat are considered

‣ safety threat: no side-effect of running, switch and restoring of any OS
‣ RPC no-return. time-out exit mechanism

‣ RPC wrong return. solved by the protocols or ways on the upper soft layer

‣ wrong order of RPCs. task ID attached in each RPC solves it. One time one RPC

‣ malicious code threat: prevent the executing of code in the buffer memory
‣ leverage the DEP (Data Execution Protect) to forbid the code executing

‣ DoS attack threat
‣ set up a counter in the RPC service handler of RTOS to test the frequency of calling

from GPOS

‣ If the calling frequency exceeds a predefined threshold, RTOS will deprive some
execution ticks from GPOS

‣ Background & Motivation
‣ Problem Statment
‣ Design Philosophy
‣ Experimental Evaluation

‣ Conclusions

Evaluation
‣ Experimental Platform

‣ ARMv8 Foundation Fast-Model Platform
‣ FFP, version FM000-KT-00035-r11p1-24rel2
‣ quad-core Cortex-A53 CPU
‣ 2GB RAM memory
‣ peripherals (Watchdog timer, Real-time timer, and Power controller)
‣ secure pe- ripherals (Real-time clock, Trusted watchdog, Random number

generator)
‣ We omit the service code in GPOS so that the service returns a

SMC message immediately without any business function.

‣ Two metrics were evaluated:
 Latency Predictability and Distribution
 Latency Comparison

Evaluation
‣ Latency Predictability and Distribution

‣ There are three periodic tasks τ , τ1 , τ2 in RTOS and only τ requires RPC.
‣ RTOS is schedulable under FPS policy. （ total load less than 69%,

UnixBench as a payload in GPOS ）
‣ In the first experiment, τ owns highest priority. RPC from τ for 450000 times

‣ 99.3%+ calls complete in 2500 cycles, use logarithms of occurrence as Y-axis
scale

‣ all RPCs complete in 8000 cycles, and only 3 calls exceed 6000 cycles.

Evaluation
‣ Latency Predictability and Distribution

‣ In the second experiment, consider the preemption by tasks with higher
‣ assign the lowest priority to τ, and test the latency of RPC from τ
‣ comparison of maximum, minimum, average latency, and the mean-square

error of latency for RTRG-RPC

‣ the maximum latency is significantly increased
‣ shows that RTRG-RPC scheme does not violate priority scheduling and is still

predicable in a lower priority

Evaluation
‣ Latency Comparison

‣ implement another two RPC policies for comparison
‣ TRG-RPC: traditional RPC method without any real-time consideration
‣ ITRG-RPC: enhanced version of TRG-RPC by adding the event path model and

GPOS service model of RTRG-RPC

‣ RTRG-RPC owns much higher efficiency and better predictability comparing to
TRG-RPC and ITRG- RPC

‣ Rapid Service in GPOS do more significant help to the efficiency than Priority −
Swapping

‣ link in the GPOS is most crucial

‣ Background & Motivation
‣ Problem Statment
‣ Design Philosophy
‣ Experimental Evaluation

‣ Conclusions

Conclusions & Future Work

‣ this paper verifies the feasibility of obtaining a real- time service from
a GPOS

‣ Time predictability of RTRG-RPC is achieved by three mechanisms:
SGI message transforming, interrupt handler RPC serving, and
priority-swapping

‣ a number of issues of details (such as cache miss and lock waiting,
etc.) within the GPOS have been ignored. Our next plan is to
address these issues and to extend the system model to a distributed
multi-core platform

Thanks
Question & Comments?

