® %P B K

RATHONAL UNINERSITY OF DEFESSE TEEHNGLGGY

Work-In-Progress: Real-Time RPC for Hybrid
Dual-OS System

Pan Dong, Zhe Jiang, Alan Burns, Yan Ding, Jun Ma

Background & Motivation

Problem Statment
Design Philosophy

Experimental Evaluation

Conclusions

U’NWERS]TY@;‘%}?’{

Background & Motivation

Problem Statment
Design Philosophy

Experimental Evaluation

Conclusions

U’NIVERSITY@‘%}J’{

Background & Motivation

> hybrid multi-OS system (HMOS):
Integrating components with different levels £
of criticality on one physical platform for
optimizing cost, space, weight, heat
generation and power consumption.

» Examples:

» AUTOSAR 4.0+ -- ECUs (Electronic Control Units) , ADAS (Advanced Driver-
Assistance System) and IVIS (In-Vehicle Information System) on a vichle

> ARINC 653 -- flight control systems, environment control systems, and amu
sement syste-ms on modern aircraft

UNIVERSITY oF Y01k

o1
= P
17 NATHONAL UNIVERSITY OF DEFENSE TECHNOLOGY

Background & Motivation

» Consolidation Method

> Virtualization: bad efficiency and predictability

» Hardware Supported Isolation: better performance
» Simplest Form

> hybrid dual-OS system (HDOS)

» RTOS +GPOS

Resources_Isolation

f RTOS "
Control

: Service | ApP | Ul | Processing

: | Power Posture Image
:] Control Control) Tugh
€ Stheduling D I GPOS e
RTOS kernel _L, | Switcher i H e |
. - -

Hardware

Hardware

Dual-kernel System Virtualization System

UNIVERSITY (Jy‘%ﬂk

Background & Motivation

> Significant Effect of Inter-operation for HMOS
> All sides get functions and performance enhanceM
> One plus one is greater than two

» Example

» From inter-operation, the ECU cluster in the RTOS can
acquire abundant functionalities (fault logs, Cloudside Al
decision) from the VIS in the GPOS.

» Communication is the foundation of inter-operation
> Security/safety and efficiency (time predictability)

» RPC is the fundamental mechanism of communication

UNIVERSITY of Y01k

Background & Motivation

» Current optimizations for RPC fail to satisfy time predictability
> mostly designed for virtualization systems

> simplify under protocol stack, use shared-memory
(XenLoop, MemPipe)

» straightforward RPC with hardware assistants (XENRPC,
SafeG)

UNIVERSITY afﬁ?/{

Review of TZDKS

Normal World Secure World

Normal App

TZAPI Library

Monitor
Mode

ARM Trustzone based SoC
IDesign Idea: combines strong points of dual-kernel and virtualization by

utilizing TrustZone technology

[Normal world stack: GPOS (Linux) and applications.
1Secure world stack: monitor module, RTOS (ucOSIl) and RT tasks.

JUse open source project *Trusted firmware’ as foundation.

UNIVERSITY c?y‘//vk

Background & Motivation

Problem Statment
Design Philosophy

Experimental Evaluation

Conclusions

U’NIVERSITY@‘%}J’{

PROBLEM STATEMENT

» Mainly concern RG-RPC: RTOS =2 GPOS
» An abstracted process of RG-RPC:

w Issuing RPC request

—
Y Scheduling&switching of RTO A -

BB REGHESipe ™ +4 % & F#®an 3 ¥ Sua & & 5 e Requrest TI
b Scheduling
A . Schedul
y GPOS executlng o Swiat:ﬁing STS'i‘itL::i"le Tss1
o s S Timeout? - ——REQUEST-s- -
3 GPOS run
2 . . . '% & Estimating Other task
Y Another scheduling&switching = - | To
= Service Service
=
O
y4 Retum Of RPC % g;}_e_;g:z:gw-rf’ — St | B
sad &Switch
. Switching
> We define them as J_ PR, A N rewn |
Followup
'Operatson W

g Ty, Tssiy T, Tsso Tr

UNIVERS]TY(?"%:??Q’.

PROBLEM STATEMENT

» Efficiency

» Three main reasons make the time predictability
difficult. GPOS low priority, RPC service not
deterministic, lack preemption for RPC.

> Security

» For safety, each communication must not lead to or
propagate hazards and faults.

» For security, a malicious task can not threat other
OSs or get private information through a deliberate
message.

UNIVERSITY Qf}"ﬂ?f{

Background & Motivation

Problem Statment
Design Philosophy

Experimental Evaluation

Conclusions

U’NIVERSITY@‘%}J’{

Design Philosophy

UNIVERSITY (Jy‘%ﬂk

Efficiency Design of RTRG-RPC

Requrest | 17 RTRG-RPC Process

Schedule _ P — “
gswitch | e & L DU
GPOS run
______ - ——— Other task
1/ Event/Data \\-\ T //. S s A
’ ‘ (erviced by
\\ /} RPC GQ { |
N _Pa_t_lj _____ 4 Service ‘\\ Int-handler
Other task
Schedule TS %5 2
&Switch)
Return TR

> Three main mechanisms for time predicabillity:
> priority-swapping
> SGI (Software Generate Interrupt) messages transforming

> interrupt handler RPC serving

UNIVERSITY afﬂvk

Efficiency Design of RTRG-RPC

> Priority-Swapping Enhanced Ildle-Scheduling Policy

» ldle-scheduling plus 1G. add another RT task 15 serving as a GPOS
container. Tg owns a very low original but variable priority.

> Priority-Swapping. When a regular task 71, has triggered a RG-RPC call, it
turns to sleep and exchange its priority with 1G.

> Timeout-exit strategy for 1G. A timeout value can be set for T1,. In case of no
RPC returning, 15 will be suspended and all priorities will be restored.

¢+ 0@ ® @6 CRORORONL

Tc (GPOS)

T1—

L% _'_'_"7// ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ = //A— ————————————————————————— +» Jime

Tasks runtime figure for 11, 72, and T3, where 71 has a RT-RPC action. The priorities
are ordered as T 1< T 2< T .

(D: idle-scheduling before this time then T sarrives

2): normal schedule 3 ®): preemption @ (70): end of preemption

(®): T 1evoke the RPC and sleep, then T ¢ takes priority of T 1and runs

(8): RPC completes and T 1is awake (9): idle-scheduling (0: T »arrives

Efficiency Design of RTRG-RPC

» RTRG-RPC Commnication Path

» Event Path: software interrupt is chosen as the event method for RTOS.
RPC service notifies GPOS by a SMC call directly.

» Data Path:

> shared memory
> a request pool and an answer pool

> pool-head for maintenance. Index links to the slot number, value remarks the RPC
priority

> minimum prinlil /tha hinhact nriaritu)
Normal World Secure World

G ROS

T Shared
Service Memory 1<
(Data Path)
SGI(Event Path)
Turstzone-enabled Platform

Efficiency Design of RTRG-RPC

» RTRG-RPC Service implementation in GPOS

> interrupt handler serves RG-RPC in the GPOS kernel

> Considering the system efficiency affected by long hard-irq critical region,
we can place the RPC service into a high priority soft-irqg

> make the service time determinable by increasing the priority of the interrupt
related to RG-RPC, and by simplifying the procedure of RPC service into a
kernel module

» GICv3 hardware guarantees that the unmasked interrupt with the highest
priority will be firstly sent to the CPU core in bounded time.

UNIVERSITY of Y01k

Security Design of RTRG-RPC

» three types of threat are considered

» safety threat: no side-effect of running, switch and restoring of any OS

> RPC no-return. time-out exit mechanism
> RPC wrong return. solved by the protocols or ways on the upper soft layer

> wrong order of RPCs. task ID attached in each RPC solves it. One time one RPC
> malicious code threat: prevent the executing of code in the buffer memory
» leverage the DEP (Data Execution Protect) to forbid the code executing

» DoS attack threat

> set up a counter in the RPC service handler of RTOS to test the frequency of calling
from GPOS

> If the calling frequency exceeds a predefined threshold, RTOS will deprive some
execution ticks from GPOS

UNIVERSITY of Y01k

Background & Motivation

Problem Statment
Design Philosophy

Experimental Evaluation

Conclusions

U’NIVERSITY@‘%}J’{

Evaluation

» Experimental Platform

» ARMv8 Foundation Fast-Model Platform

» FFP, version FM000-KT-00035-r11p1-24rel2

> quad-core Cortex-A53 CPU

» 2GB RAM memory

> peripherals (Watchdog timer, Real-time timer, and Power controller)

> secure pe- ripherals (Real-time clock, Trusted watchdog, Random number
generator)

» We omit the service code in GPOS so that the service returns a
SMC message immediately without any business function.

> Two metrics were evaluated:
€ Latency Predictability and Distribution

€ Latency Comparison

UNIVERSITY Qf}"ﬂ?f{

Evaluation

» Latency Predictability and Distribution
» There are three periodic tasks 7, 7, , 7, in RTOS and only 1 requires RPC.

» RTOS is schedulable under FPS policy. total load less than 69%,
UnixBench as a payload in GPOS

> In the first experiment, r owns highest priority. RPC from 7 for 450000 times

Logrithms of Frequency
20 -
18 -
16 -
14 -
12 -

10 -

8_

6_

4_

. 118

0 T T T T T T T T I.I-I

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 8000

99.3%+ calls complete in 2500 cyefes %ise logarithms of occurrence as Y-axis
scale

Total Number of Test: 450000

v

» all RPCs complete in 8000 cycles, and only 3 calls exceed 6000 cycles.

UNIVERSJTYfo"cJ?'f{

Evaluation

» Latency Predictability and Distribution

> In the second experiment, consider the preemption by tasks with higher
» assign the lowest priority to 1, and test the latency of RPC from 1

» comparison of maximum, minimum, average latency, and the mean-square
error of latency for RTRG-RPC

TABLE 1
RTRG-RPC LATENCY IN DIFFERENT PRIORITIES (UNIT: CYCLES)

Max Min Average MSE

Highest Priority 8987 2037 2079.3 176.1
Lower Priority 179463 2036 2114.8 1267.2

> the maximum latency is significantly increased

» shows that RTRG-RPC scheme does not violate priority scheduling and is still
predicable in a lower priority

UNIVERSITY (27‘31"0?7&

Evaluation

» Latency Comparison

» implement another two RPC policies for comparison

» TRG-RPC: traditional RPC method without any real-time consideration

» ITRG-RPC: enhanced version of TRG-RPC by adding the event path model and
GPOS service model of RTRG-RPC

TABLE 11
LATENCY COMPARISON FOR THREE RG-RPCS (UNIT: CYCLES)
Max Min Average MSE
RTRG-RPC 6867 2043 2078.4.3 95.8
ITRG-RPC 372330 2298 64485 .4 108405

TRG-RPC 50497874 49798712 49911274 1235735

» RTRG-RPC owns much higher efficiency and better predictability comparing to
TRG-RPC and ITRG- RPC

> Rapid Service in GPOS do more significant help to the efficiency than Priority -
Swapping

» link in the GPOS is most crucial

UNIVERSITY (27‘31"0?7&

Background & Motivation

Problem Statment
Design Philosophy

Experimental Evaluation

Conclusions

U’NIVERSITY@‘%}J’{

Conclusions & Future Work

this paper verifies the feasibility of obtaining a real- time service from
a GPOS

Time predictability of RTRG-RPC is achieved by three mechanisms:
SGI| message transforming, interrupt handler RPC serving, and
priority-swapping

a number of issues of details (such as cache miss and lock waiting,
etc.) within the GPOS have been ignored. Our next plan is to
address these issues and to extend the system model to a distributed
multi-core platform

UNIVERSITY Qf}"ﬂ?f{

Thanks
Question & Comments ?

