WiP: Pricing Mechanism and Workload Scheduling to Optimize Social Welfare and Cost for Fog Computing Systems

Niraj Kumar, Arijit Mondal

Department of Computer Science & Engineering Indian Institute of Technology Patna India

RTSS 2019 WiP Presentation

April 24, 2020

- The successive (however, overlapping) phases of computing paradigm
 - Mainframe computers → Personal computers → Network/Internet computing → Grid computing → Cloud computing
- Cloud Computing
 - Widely deployed
 - Huge number of devices
 - It is expected that by 2020
 - nearly 50 billion devices will be connected to the Internet
 - generating an economy of exceeding 3 trillion
 - data volume of more than 43 trillion gigabytes
 - Issues
 - $\bullet~$ Huge amount of data \rightarrow tremendous network bandwidth
 - Large latency
 - Energy Consumption

- Addresses the inherent issues of cloud computing
- Pushes applications, services, computing, and decision making near to the devices where data is being generated
- Offers the benefits of the cloud computing systems to the real-time applications
- Complementary not a replacement

- Cloud computing: a few centralized servers
- Fog computing systems: a large number of geographically separated fog devices
- A major challenge: offloading of tasks with various constraints
- Another major challenge: set up a pricing mechanism for the usage of resources/services
 - as usually the fog devices are owned by different parties
- Cloud computing
 - well-accepted and established computing model
 - pricing problem has been widely studied

Problem Formulation

- Only a few elementary works deal with the pricing for fog computing systems
- Common practice: either of the two problems
 - pricing and offloading
- The pricing strategy of service providers \rightarrow objective is to maximize the profit
- $\bullet~$ Users $\rightarrow~$ timely execution of the workload (with certain constraints), however with minimum cost
- social welfare \rightarrow an inclusive parameter
- Assumption: service providers fix the prices independently, the two problems becomes strongly related
 - which is realistic for highly distributed systems such as fog computing systems

- 3-layer fog architecture
- Each terminal node is a device generating a workload
- A fog instance consists of one or multiple fog devices that acts as a unit
- Each workload is to be scheduled on a fog instance
 - that promises timely execution with the least cost
- The fog devices are geographically separated
 - not every fog instance is reachable from each terminal node
- Smart gateway selects the most appropriate fog/cloud node to execute the workload

Model

- γ_j(t̃) and δ_j(t̃) → computational capacity and cost of execution per unit time during t̃ at Fl_j(t̃) ∈ 𝔽(t̃)
- TN_i(t̃) ∈ T(t̃) generates a workload w_i(t̃) ⟨ in(i, t̃), out(i, t̃), C_i(t̃), D_i(t̃) ⟩
 - input and output data $in(i, \tilde{t})$ bytes and $out(i, \tilde{t})$ bytes, respectively
 - $\mathcal{C}_i(ilde{t})
 ightarrow$ required number of computation cycles
 - $D_i(\tilde{t}) \rightarrow \text{deadline}$
- $\alpha_{ij}(\tilde{t}) \rightarrow \text{transmission rate}$

Formulation

- $\beta_{ij}(\tilde{t}) \rightarrow \text{connected}$
- $\Theta_i(\tilde{t})
 ightarrow$ reachable
- $\sigma_{ij}(\tilde{t})
 ightarrow$ allocated
- accepted workload

$$\sum_{i \neq j \mid \mathsf{Fl}_j(\tilde{t}) \in \Theta_i(\tilde{t})} \sigma_{ij}(\tilde{t}) = 1$$

communication time

$$\lambda_{i}(\tilde{t}) = \sum_{\forall j \mid \mathsf{Fl}_{j}(\tilde{t}) \in \Theta_{i}(\tilde{t})} \sigma_{ij}(\tilde{t}) \left(\frac{in(i, \tilde{t}) + out(i, \tilde{t})}{\alpha_{ij}(\tilde{t})} \right)$$

• computation time

$$\mu_{i}(\tilde{t}) = \sum_{\forall j | \mathsf{Fl}_{j}(\tilde{t}) \in \Theta_{i}(\tilde{t})} \sigma_{ij}(\tilde{t}) * \frac{C_{i}(\tilde{t})}{\gamma_{j}(\tilde{t})}$$

Formulation

- Output available time $\mathsf{OAT}(i, \tilde{t})$ $\lambda_i(\tilde{t}) + \mu_i(\tilde{t}) + wait(i, \tilde{t}) \le D_i(\tilde{t})$
- Cost of execution

$$cost(i, \tilde{t}) = \sum_{\forall \mathsf{Fl}_{j}(\tilde{t}) \in \Theta_{i}(\tilde{t})} \sigma_{ij}(\tilde{t}) * \frac{C_{i}(\tilde{t})}{\gamma_{j}(\tilde{t})} * \delta_{j}(\tilde{t})$$

• User surplus at $\text{TN}_i(\tilde{t})$ during \tilde{t} is

$$\Upsilon_i(\tilde{t}) = util(i, \tilde{t}) - cost(i, \tilde{t})$$

- $P_j(ilde{t})
 ightarrow {\sf profit}$ at ${\sf Fl}_j(ilde{t})$ in interval $ilde{t}$
- Social welfare during \tilde{t} is

$$SW(\tilde{t}) = \sum_{\forall j | \mathsf{Fl}_j(\tilde{t}) \in \mathbb{F}(\tilde{t})} P_j(\tilde{t}) + \sum_{\forall i | \mathsf{TN}_i(\tilde{t}) \in \mathbb{T}(\tilde{t})} \Upsilon_i(\tilde{t})$$

• Compute SW(p)

Proposed Approach

Algorithm 1: hCost

```
1 for each w_i(t) \in W(t) do
        proximity(i, t) \leftarrow \emptyset
 2
        for each FI_i(t) \in \Theta_i(t) do
 3
             if \frac{in(i,t)}{\alpha_{i,i}(t)} + \frac{C_i(t)}{\gamma_i(t)} + \frac{out(i,t)}{\alpha_{i,i}(t)} \le D_i(t) then
 4
              proximity(i, t) = proximity(i, t) \cup FI_i(t)
 5
        end
 6
 7 end
   for each w_i(t) \in W(t) do
 8
        cand(i, t) \leftarrow \emptyset
 9
        for each FI_i(t) \in proximity(i, t) do
10
              if Eq. (5) holds for w_i(t) and existing workloads on
11
              FI_i(t) then add FI_i(t) to cand(i, t)
        end
12
        Allocate w_i(t) to the fog instance FI_i(t) \in cand(i, t) with
13
         least execution cost
14 end
```


	cfg	# <i>f</i>	%Impr	%Reject	
				hUtil	hCost
	1	100	0.81	4.23	4.61
	2	150	14.86	1.99	0.21
	3	200	24.36	1.14	0.11
	4	250	31.72	0.86	0.09
	5	300	35.97	0.75	0.07

- Addresses pricing and the offloading problem in an integrated manner for the real-time tasks
- Objective is to maximize the social welfare, whereas minimize the cost
- Future Works
 - Include the cloud layer
 - Obtaining an optimal solution
 - Pricing mechanism
 - devise the price at the beginning of each interval
 - must examine the interplay of revenue and profit with other parameters
 - further exploration on computing $util(i, \tilde{t})$

