
Niraj Kumar, Arijit Mondal

Department of Computer Science & Engineering
Indian Institute of Technology Patna
India

RTSS 2019 WiP Presentation

April 24, 2020
Introduction

- The successive (however, overlapping) phases of computing paradigm
 - Mainframe computers → Personal computers → Network/Internet computing → Grid computing → Cloud computing

- Cloud Computing
 - Widely deployed
 - Huge number of devices
 - It is expected that by 2020
 - nearly 50 billion devices will be connected to the Internet
 - generating an economy of exceeding 3 trillion
 - data volume of more than 43 trillion gigabytes

- Issues
 - Huge amount of data → tremendous network bandwidth
 - Large latency
 - Energy Consumption
Fog Computing

- Addresses the inherent issues of cloud computing
- Pushes applications, services, computing, and decision making near to the devices where data is being generated
- Offers the benefits of the cloud computing systems to the real-time applications
- Complementary not a replacement
Problem Formulation

- Cloud computing: a few centralized servers
- Fog computing systems: a large number of geographically separated fog devices
- A major challenge: offloading of tasks with various constraints
- Another major challenge: set up a pricing mechanism for the usage of resources/services
 - as usually the fog devices are owned by different parties
- Cloud computing
 - well-accepted and established computing model
 - pricing problem has been widely studied
Only a few elementary works deal with the pricing for fog computing systems.

Common practice: either of the two problems
- pricing and offloading

The pricing strategy of service providers \rightarrow objective is to maximize the profit.

Users \rightarrow timely execution of the workload (with certain constraints), however with minimum cost.

social welfare \rightarrow an inclusive parameter.

Assumption: service providers fix the prices independently, the two problems becomes strongly related.
- which is realistic for highly distributed systems such as fog computing systems.
Architecture

Smart Gateway

CS_1 \quad \cdots \quad CS_l

FI_1 \quad FI_2 \quad \cdots \quad FI_m

TN_1 \quad TN_2 \quad TN_3 \quad TN_4 \quad \cdots \quad TN_n

private fog

private fog
3-layer fog architecture

Each terminal node is a device generating a workload

A fog instance consists of one or multiple fog devices that acts as a unit

Each workload is to be scheduled on a fog instance that promises timely execution with the least cost

The fog devices are geographically separated
 - not every fog instance is reachable from each terminal node

Smart gateway selects the most appropriate fog/cloud node to execute the workload
Model

All the workloads generated in an interval are offloaded at the beginning of next interval

\[\gamma_j(\tilde{t}) \] and \(\delta_j(\tilde{t}) \) → computational capacity and cost of execution per unit time during \(\tilde{t} \) at \(F|j(\tilde{t}) \in \mathbb{F}(\tilde{t}) \)

\(TN_i(\tilde{t}) \in \mathbb{T}(\tilde{t}) \) generates a workload \(w_i(\tilde{t})\langle in(i, \tilde{t}), out(i, \tilde{t}), C_i(\tilde{t}), D_i(\tilde{t}) \rangle \)
- input and output data \(in(i, \tilde{t}) \) bytes and \(out(i, \tilde{t}) \) bytes, respectively
- \(C_i(\tilde{t}) \) → required number of computation cycles
- \(D_i(\tilde{t}) \) → deadline

\(\alpha_{ij}(\tilde{t}) \) → transmission rate
Formulation

- $\beta_{ij}(\tilde{t}) \rightarrow$ connected
- $\Theta_i(\tilde{t}) \rightarrow$ reachable
- $\sigma_{ij}(\tilde{t}) \rightarrow$ allocated
- *accepted workload*
 \[
 \sum_{\forall j | \text{Fl}_j(\tilde{t}) \in \Theta_i(\tilde{t})} \sigma_{ij}(\tilde{t}) = 1
 \]

- *communication time*
 \[
 \lambda_i(\tilde{t}) = \sum_{\forall j | \text{Fl}_j(\tilde{t}) \in \Theta_i(\tilde{t})} \sigma_{ij}(\tilde{t}) \left(\frac{\text{in}(i, \tilde{t}) + \text{out}(i, \tilde{t})}{\alpha_{ij}(\tilde{t})} \right)
 \]

- *computation time*
 \[
 \mu_i(\tilde{t}) = \sum_{\forall j | \text{Fl}_j(\tilde{t}) \in \Theta_i(\tilde{t})} \sigma_{ij}(\tilde{t}) \cdot \frac{C_i(\tilde{t})}{\gamma_j(\tilde{t})}
 \]
Formulation

- Output available time OAT\((i, \tilde{t})\)
 \[
 \lambda_i(\tilde{t}) + \mu_i(\tilde{t}) + \text{wait}(i, \tilde{t}) \leq D_i(\tilde{t})
 \]

- Cost of execution
 \[
 \text{cost}(i, \tilde{t}) = \sum_{\forall \text{FI}_j(\tilde{t}) \in \Theta_i(\tilde{t})} \sigma_{ij}(\tilde{t}) \cdot \frac{C_i(\tilde{t})}{\gamma_j(\tilde{t})} \cdot \delta_j(\tilde{t})
 \]

- User surplus at TN\(_i(\tilde{t})\) during \(\tilde{t}\) is
 \[
 \gamma_i(\tilde{t}) = \text{util}(i, \tilde{t}) - \text{cost}(i, \tilde{t})
 \]

- \(P_j(\tilde{t})\) → profit at Fl\(_j(\tilde{t})\) in interval \(\tilde{t}\)

- Social welfare during \(\tilde{t}\) is
 \[
 SW(\tilde{t}) = \sum_{\forall j|\text{Fl}_j(\tilde{t}) \in F(\tilde{t})} P_j(\tilde{t}) + \sum_{\forall i|\text{TN}_i(\tilde{t}) \in T(\tilde{t})} \gamma_i(\tilde{t})
 \]

- Compute \(SW(p)\)
Algorithm 1: $h\text{Cost}$

1. for each $w_i(t) \in \mathbb{W}(t)$ do
2. $proximity(i, t) \leftarrow \emptyset$
3. for each $FI_j(t) \in \Theta_i(t)$ do
4. if $\frac{in(i,t)}{\alpha_{ij}(t)} + \frac{C_i(t)}{y_j(t)} + \frac{out(i,t)}{\alpha_{ij}(t)} \leq D_i(t)$ then
5. $proximity(i, t) = proximity(i, t) \cup FI_j(t)$
6. end
7. end
8. for each $w_i(t) \in \mathbb{W}(t)$ do
9. $cand(i, t) \leftarrow \emptyset$
10. for each $FI_j(t) \in proximity(i, t)$ do
11. if Eq. (5) holds for $w_i(t)$ and existing workloads on $FI_j(t)$ then add $FI_j(t)$ to $cand(i, t)$
12. end
13. Allocate $w_i(t)$ to the fog instance $FI_j(t) \in cand(i, t)$ with least execution cost
14. end
Proposed Approach

cfg	#f	%Impr	%Reject
			hUtil
1	100	0.81	4.23
2	150	14.86	1.99
3	200	24.36	1.14
4	250	31.72	0.86
5	300	35.97	0.75
Conclusion and Future Work

- Addresses **pricing** and the **offloading** problem in an integrated manner for the real-time tasks.
- Objective is to **maximize the social welfare**, whereas **minimize the cost**.
- **Future Works**
 - Include the cloud layer
 - Obtaining an optimal solution
 - Pricing mechanism
 - devise the price at the beginning of each interval
 - must examine the interplay of revenue and profit with other parameters
 - further exploration on computing $util(i, \bar{t})$
Thanks