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Highlights

The paper provides 

tight necessary feasibility tests 
for mixed-criticality (MC) systems on uniprocessor

the first study that yields non-trivial results 

for MC necessary feasibility:

▪ Reducing a set of MC task sets whose feasibility is unknown by existing studies

▪ Identifying unique issues of developing necessary feasibility tests for MC systems
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▪ Develop necessary feasibility tests that cover a broader range of infeasible 
MC task sets on a uniprocessor

▫ Determining MC-feasibility for dual-criticality task systems is known to be NP-hard

Goal
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Contributions of This Work

The first study that yields non-trivial results 
for MC necessary feasibility

Explore unique issues specific to MC task 
systems for developing necessary 
feasibility tests  

Identify new challenges posed by such 
unique issues of MC task systems

Establish foundations of necessary 
feasibility tests for MC task systems 
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If every scenario is feasible (If there exists at least one scenario that is not feasible

▪ Feasible scenario
▫ If there exists a schedule that satisfies

i) every job finishes its execution time before its deadline when exhibiting the LO behavior

ii) every HI job finishes its execution time before its deadline when exhibiting the HI behavior
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Q1. How to characterize and calculate the demand in an interval that changes depending on 
the mode change instant? (from O1 & O2)
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Q2. What is the meaning of the demand > the supply ?

Q3. How to derive a necessary feasibility condition ?

• Specify a range of mode change instant without the target scheduling algorithm (Lemma 4) 

• Select two sub-intervals based on a mode change instant 𝑡∗

• Calculate the demand in the target sub-intervals (Lemmas 5,6,7) 

• Compare the total demand with the total supply in the target sub-intervals
• Judge the infeasibility of the mode change instant 𝒕∗ (Lemma 8)

• Repeat Lemma 8 for all 𝑡∗ in the mode change instant range
• Check there exists no feasible mode change instant (Infeasibility of the task set)  (Theorem 1)



Our Approach
(a) Target 𝑱𝒌

∗

(the job with the earliest release time among all HI jobs 
whose execution requirement is strictly larger than LO WCET)

(b) Specify mode change instant range in 𝒕∗ ∈ [3,9] 
(Lemma 4)



Our Approach
(a) Target 𝑱𝒌

∗

(the job with the earliest release time among all HI jobs 
whose execution requirement is strictly larger than LO WCET)

(b) Specify mode change instant range in 𝒕∗ ∈ [3,9] 
(Lemma 4)

(c) Given 𝒕∗, select sub-intervals [0,7] and [7,12]



Our Approach
(a) Target 𝑱𝒌

∗

(the job with the earliest release time among all HI jobs 
whose execution requirement is strictly larger than LO WCET)

(b) Specify mode change instant range in 𝒕∗ ∈ [3,9] 
(Lemma 4)

(c) Given 𝒕∗, select sub-intervals [0,7] and [7,12]

(d) Calculate demand in the sub-intervals (Lemmas 5,6,7)



Our Approach
(a) Target 𝑱𝒌

∗

(the job with the earliest release time among all HI jobs 
whose execution requirement is strictly larger than LO WCET)

(b) Specify mode change instant range in 𝒕∗ ∈ [3,9] 
(Lemma 4)

(c) Given 𝒕∗, select sub-intervals [0,7] and [7,12]

(d) Calculate demand in the sub-intervals (Lemmas 5,6,7)

(e) Check infeasibility of the mode change instant 𝒕∗

(Lemma 8) 



Our Approach
(a) Target 𝑱𝒌

∗

(the job with the earliest release time among all HI jobs 
whose execution requirement is strictly larger than LO WCET)

(b) Specify mode change instant range in 𝒕∗ ∈ [3,9] 
(Lemma 4)

(c) Given 𝒕∗, select sub-intervals [0,7] and [7,12]

(d) Calculate demand in the sub-intervals (Lemmas 5,6,7)

(e) Check infeasibility of the mode change instant 𝒕∗

(Lemma 8) 
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MC-NFT: 56% task sets proven infeasible
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Benefit of dealing with unique issues 
in MC task systems
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