
Jinkyu Lee
Sungkyunkwan University

Necessary Feasibility Analysis
for Mixed-Criticality Task Systems on Uniprocessor

Hoon Sung Chwa
DGIST

Hyeongboo Baek
Incheon National University

40th IEEE Real-Time Systems Symposium (RTSS 2019)

Highlights

The paper provides

tight necessary feasibility tests
for mixed-criticality (MC) systems on uniprocessor

the first study that yields non-trivial results

for MC necessary feasibility:

▪ Reducing a set of MC task sets whose feasibility is unknown by existing studies

▪ Identifying unique issues of developing necessary feasibility tests for MC systems

▪ Is it possible to successfully schedule every instance of all tasks without
missing any deadlines?

“Feasibility” of timing guarantees

▪ Is it possible to successfully schedule every instance of all tasks without
missing any deadlines?

“Feasibility” of timing guarantees

▪ Two directions

▫ Addressing sufficient feasibility
(Finding “Yes” answers)

▫ Addressing necessary feasibility
(Finding “No” answers)

▪ Is it possible to successfully schedule every instance of all tasks without
missing any deadlines?

“Feasibility” of timing guarantees

▪ Two directions

▫ Addressing sufficient feasibility
(Finding “Yes” answers)

▪ Develop new scheduling algorithms
and their schedulability analysis

▫ Addressing necessary feasibility
(Finding “No” answers)

▪ Is it possible to successfully schedule every instance of all tasks without
missing any deadlines?

“Feasibility” of timing guarantees

▪ Two directions

▫ Addressing sufficient feasibility
(Finding “Yes” answers)

▪ Develop new scheduling algorithms
and their schedulability analysis

▫ Addressing necessary feasibility
(Finding “No” answers)

Task sets

▪ Is it possible to successfully schedule every instance of all tasks without
missing any deadlines?

“Feasibility” of timing guarantees

▪ Two directions

▫ Addressing sufficient feasibility
(Finding “Yes” answers)

▪ Develop new scheduling algorithms
and their schedulability analysis

▫ Addressing necessary feasibility
(Finding “No” answers)

Feasible task sets by

scheduling algorithm ATask sets

▪ Is it possible to successfully schedule every instance of all tasks without
missing any deadlines?

“Feasibility” of timing guarantees

▪ Two directions

▫ Addressing sufficient feasibility
(Finding “Yes” answers)

▪ Develop new scheduling algorithms
and their schedulability analysis

▫ Addressing necessary feasibility
(Finding “No” answers)

Feasible task sets by

scheduling algorithm A

Feasible task sets by

A, B

Task sets

▪ Is it possible to successfully schedule every instance of all tasks without
missing any deadlines?

“Feasibility” of timing guarantees

▪ Two directions

▫ Addressing sufficient feasibility
(Finding “Yes” answers)

▪ Develop new scheduling algorithms
and their schedulability analysis

▫ Addressing necessary feasibility
(Finding “No” answers)

Feasible task sets by

scheduling algorithm A

Feasible task sets by

A, B, C

Feasible task sets by

A, B

Task sets

▪ Is it possible to successfully schedule every instance of all tasks without
missing any deadlines?

“Feasibility” of timing guarantees

▪ Two directions

▫ Addressing sufficient feasibility
(Finding “Yes” answers)

▪ Develop new scheduling algorithms
and their schedulability analysis

▫ Addressing necessary feasibility
(Finding “No” answers)

Feasible task sets by

scheduling algorithm A

Feasible task sets by

A, B, C

Feasible task sets by

A, B

Task sets

Expand a set of task sets

proven schedulable

by at least a scheduling algorithm

▪ Is it possible to successfully schedule every instance of all tasks without
missing any deadlines?

“Feasibility” of timing guarantees

▪ Two directions

▫ Addressing sufficient feasibility
(Finding “Yes” answers)

▪ Develop new scheduling algorithms
and their schedulability analysis

▫ Addressing necessary feasibility
(Finding “No” answers)

▪ Derive conditions of task sets that
are never schedulable by any
scheduling algorithm

Task sets

▪ Is it possible to successfully schedule every instance of all tasks without
missing any deadlines?

“Feasibility” of timing guarantees

▪ Two directions

▫ Addressing sufficient feasibility
(Finding “Yes” answers)

▪ Develop new scheduling algorithms
and their schedulability analysis

▫ Addressing necessary feasibility
(Finding “No” answers)

▪ Derive conditions of task sets that
are never schedulable by any
scheduling algorithm

Task sets

Infeasible task sets by

necessary condition X

▪ Is it possible to successfully schedule every instance of all tasks without
missing any deadlines?

“Feasibility” of timing guarantees

▪ Two directions

▫ Addressing sufficient feasibility
(Finding “Yes” answers)

▪ Develop new scheduling algorithms
and their schedulability analysis

▫ Addressing necessary feasibility
(Finding “No” answers)

▪ Derive conditions of task sets that
are never schedulable by any
scheduling algorithm

Task sets

Infeasible task sets by

necessary condition X

Infeasible task sets by

X, Y

▪ Is it possible to successfully schedule every instance of all tasks without
missing any deadlines?

“Feasibility” of timing guarantees

▪ Two directions

▫ Addressing sufficient feasibility
(Finding “Yes” answers)

▪ Develop new scheduling algorithms
and their schedulability analysis

▫ Addressing necessary feasibility
(Finding “No” answers)

▪ Derive conditions of task sets that
are never schedulable by any
scheduling algorithm

Task sets

Infeasible task sets by

necessary condition X

Infeasible task sets by

X, Y
Reduce a set of task sets

not proven schedulable so far

▪ Is it possible to successfully schedule every instance of all tasks without
missing any deadlines?

“Feasibility” of timing guarantees

▪ Two directions

▫ Addressing sufficient feasibility
(Finding “Yes” answers)

▪ Develop new scheduling algorithms
and their schedulability analysis

▫ Addressing necessary feasibility
(Finding “No” answers)

▪ Derive conditions of task sets that
are never schedulable by any
scheduling algorithm

Task sets

task sets whose

feasibility are unknown

State of the Art

Single-Criticality Task Systems Mixed-Criticality Task Systems

State of the Art

Single-Criticality Task Systems Mixed-Criticality Task Systems

+ Exact feasibility analysis

+ Optimal scheduling algorithm (EDF)

Feasible task sets by

EDF

Task sets

State of the Art

Single-Criticality Task Systems Mixed-Criticality Task Systems

+ Exact feasibility analysis

+ Optimal scheduling algorithm (EDF)

Feasible task sets by

EDF

Task sets

+ MC-specific scheduling algorithms

- No optimal scheduling algorithm

- Only a few existing necessary feasibility condition

Trivially infeasible task sets

Feasible task sets by

PLRS, EDF-VD,

GREEDY, ECDFTask sets

State of the Art

Single-Criticality Task Systems Mixed-Criticality Task Systems

+ Exact feasibility analysis

+ Optimal scheduling algorithm (EDF)

Feasible task sets by

EDF

Task sets

+ MC-specific scheduling algorithms

- No optimal scheduling algorithm

- Only a few existing necessary feasibility condition

Trivially infeasible task sets

Feasible task sets by

PLRS, EDF-VD,

GREEDY, ECDFTask sets

▪ Develop necessary feasibility tests that cover a broader range of infeasible
MC task sets on a uniprocessor

▫ Determining MC-feasibility for dual-criticality task systems is known to be NP-hard

Goal

Contributions of This Work

Contributions of This Work

The first study that yields non-trivial results
for MC necessary feasibility

Contributions of This Work

The first study that yields non-trivial results
for MC necessary feasibility

Explore unique issues specific to MC task
systems for developing necessary
feasibility tests

Identify new challenges posed by such
unique issues of MC task systems

Establish foundations of necessary
feasibility tests for MC task systems

▪ Dual-criticality systems (Vestal’s task model)

▫ Task 𝝉𝒊 = 𝑻𝒊, 𝝌𝒊, 𝑪𝒊
𝑳𝑶, 𝑪𝒊

𝑯𝑰, 𝑫𝒊 , where

▪ 𝜒𝑖 ∈ 𝐿𝑂,𝐻𝐼 ;

▫ LO – low-critical task, HI – high-critical task

▪ 𝐶𝑖
𝐿𝑂: LO WCET, 𝐶𝑖

𝐻𝐼: HI WCET

▫ for LC task 𝐶𝑖
𝐿𝑂 = 𝐶𝑖

𝐻𝐼 and for HC task𝐶𝑖
𝐿𝑂 ≤ 𝐶𝑖

𝐻𝐼

System Model

▫ Job 𝐉𝐢
𝐪
= 𝒓𝒊

𝒒
, 𝜸𝒊

𝒒
, where

▪ 𝑟𝑖
𝑞

: the release time of the job

▪ 𝛾𝑖
𝑞
∈ (0, 𝐶𝑖

𝐻𝐼]: the execution requirement

▫ Scenario for a given task set 𝜏
▪ A collection of release times and execution

requirements of jobs invoked by tasks in 𝜏

▪ Dual-criticality systems (Vestal’s task model)

▫ Task 𝝉𝒊 = 𝑻𝒊, 𝝌𝒊, 𝑪𝒊
𝑳𝑶, 𝑪𝒊

𝑯𝑰, 𝑫𝒊 , where

▪ 𝜒𝑖 ∈ 𝐿𝑂,𝐻𝐼 ;

▫ LO – low-critical task, HI – high-critical task

▪ 𝐶𝑖
𝐿𝑂: LO WCET, 𝐶𝑖

𝐻𝐼: HI WCET

▫ for LC task 𝐶𝑖
𝐿𝑂 = 𝐶𝑖

𝐻𝐼 and for HC task𝐶𝑖
𝐿𝑂 ≤ 𝐶𝑖

𝐻𝐼

System Model

▫ Job 𝐉𝐢
𝐪
= 𝒓𝒊

𝒒
, 𝜸𝒊

𝒒
, where

▪ 𝑟𝑖
𝑞

: the release time of the job

▪ 𝛾𝑖
𝑞
∈ (0, 𝐶𝑖

𝐻𝐼]: the execution requirement

▫ Scenario for a given task set 𝜏
▪ A collection of release times and execution

requirements of jobs invoked by tasks in 𝜏

If every scenario is feasible (If there exists at least one scenario that is not feasible

▪ Feasible scenario
▫ If there exists a schedule that satisfies

i) every job finishes its execution time before its deadline when exhibiting the LO behavior

ii) every HI job finishes its execution time before its deadline when exhibiting the HI behavior

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝜏1

𝜏2

𝜏3

HI

HI

LO

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO 𝑪𝟑
𝑳𝑶

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO 𝑪𝟑
𝑳𝑶

𝑪𝟐
𝑳𝑶

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO 𝑪𝟑
𝑳𝑶

𝑪𝟐
𝑳𝑶

𝑪𝟏
𝑳𝑶

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO 𝑪𝟑
𝑳𝑶

𝑪𝟐
𝑳𝑶

𝑪𝟏
𝑳𝑶

No completion

Mode Change

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO 𝑪𝟑
𝑳𝑶

𝑪𝟐
𝑳𝑶

𝑪𝟏
𝑳𝑶

No completion

Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO 𝑪𝟑
𝑳𝑶

𝑪𝟐
𝑳𝑶

𝑪𝟏
𝑳𝑶

No completion

Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

𝑪𝟐
𝑯𝑰

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO 𝑪𝟑
𝑳𝑶

𝑪𝟐
𝑳𝑶

𝑪𝟏
𝑳𝑶

No completion

Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

𝑪𝟐
𝑯𝑰

𝑪𝟏
𝑯𝑰

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO 𝑪𝟑
𝑳𝑶

𝑪𝟐
𝑳𝑶

𝑪𝟏
𝑳𝑶

No completion

Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

𝑪𝟐
𝑯𝑰

𝑪𝟏
𝑯𝑰

Case A: Only LO behavior

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO 𝑪𝟑
𝑳𝑶

𝑪𝟐
𝑳𝑶

𝑪𝟏
𝑳𝑶

No completion

Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

𝑪𝟐
𝑯𝑰

𝑪𝟏
𝑯𝑰

Case A: Only LO behavior Case B: Only HI behavior

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO 𝑪𝟑
𝑳𝑶

𝑪𝟐
𝑳𝑶

𝑪𝟏
𝑳𝑶

No completion

Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

𝑪𝟐
𝑯𝑰

𝑪𝟏
𝑯𝑰

Case A: Only LO behavior Case B: Only HI behaviorCase C: Mode Change

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO 𝑪𝟑
𝑳𝑶

𝑪𝟐
𝑳𝑶

𝑪𝟏
𝑳𝑶

No completion

Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

𝑪𝟐
𝑯𝑰

𝑪𝟏
𝑯𝑰

Case A: Only LO behavior Case B: Only HI behaviorCase C: Mode Change

C1. The demand varies depending on the system behavior

▪ Existence of the mode change

Unique Characteristics of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO 𝑪𝟑
𝑳𝑶

𝑪𝟐
𝑳𝑶

𝑪𝟏
𝑳𝑶

No completion

Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

𝑪𝟐
𝑯𝑰

𝑪𝟏
𝑯𝑰

Case A: Only LO behavior Case B: Only HI behaviorCase C: Mode Change

C1. The demand varies depending on the system behavior

C2. It is impossible to know beforehand when the mode change occurs

Necessary Feasibility of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO

𝑪𝟐
𝑳𝑶

𝑪𝟑
𝑳𝑶

No completion

𝑪𝟏
𝑳𝑶

Mode Change

Case A: Only LO behavior Case C: Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

𝑪𝟐
𝑯𝑰

𝑪𝟏
𝑯𝑰

Case B: Only HI behavior

Necessary Feasibility of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO

𝑪𝟐
𝑳𝑶

𝑪𝟑
𝑳𝑶

No completion

𝑪𝟏
𝑳𝑶

Mode Change

Case A: Only LO behavior Case C: Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

𝑪𝟐
𝑯𝑰

𝑪𝟏
𝑯𝑰

Case B: Only HI behavior

each scenario of Cases A & B ≡ a scenario of a single-criticality task system

Necessary Feasibility of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO

𝑪𝟐
𝑳𝑶

𝑪𝟑
𝑳𝑶

No completion

𝑪𝟏
𝑳𝑶

Mode Change

Case A: Only LO behavior Case C: Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

𝑪𝟐
𝑯𝑰

𝑪𝟏
𝑯𝑰

Case B: Only HI behavior

each scenario of Cases A & B ≡ a scenario of a single-criticality task system

the demand > the supply ⇒ infeasible

Necessary Feasibility of MC Task Systems

𝑪𝟏
𝑳𝑶𝜏1

𝜏2

𝜏3

HI

HI

LO

𝑪𝟐
𝑳𝑶

𝑪𝟑
𝑳𝑶

No completion

𝑪𝟏
𝑳𝑶

Mode Change

Case A: Only LO behavior Case C: Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

𝑪𝟐
𝑯𝑰

𝑪𝟏
𝑯𝑰

Case B: Only HI behavior

?

Necessary Feasibility of MC Task Systems

𝜏1

𝜏2

𝜏3

HI

HI

LO

𝑪𝟏
𝑳𝑶

Case C: Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

𝑪𝟐
𝑯𝑰

0 12

𝑡∗ = 3

Mode Change

• The demand of 𝜏1 in [0,12] = 𝐶1
𝐻𝐼

• The demand of 𝜏2 in [0,12] = 𝐶2
𝐻𝐼

• The demand of 𝜏3 in [0,12] = 0

When the mode change occurs at 𝒕∗ = 𝟑

The demand in [0,12] = 12 ≤ the supply in [0,12]

Necessary Feasibility of MC Task Systems

𝜏1

𝜏2

𝜏3

HI

HI

LO

𝑪𝟏
𝑳𝑶

Case C: Mode Change

𝑪𝟏
𝑯𝑰 − 𝑪𝟏

𝑳𝑶

𝑪𝟐
𝑯𝑰

0 12

𝑡∗ = 4

Mode Change

• The demand of 𝜏1 in [0,12] = 𝐶1
𝐻𝐼

• The demand of 𝜏2 in [0,12] = 𝐶2
𝐻𝐼

• The demand of 𝜏3 in [0,12] = 0

When the mode change occurs at 𝒕∗ = 𝟑

The demand in [0,12] = 12 ≤ the supply in [0,12]

• The demand of 𝜏1 in [0,12] = 𝐶1
𝐻𝐼

• The demand of 𝜏2 in [0,12] = 𝐶2
𝐻𝐼

• The demand of 𝜏3 in [0,12] = 1

When the mode change occurs at 𝒕∗ = 𝟒

The demand in [0,12] = 13 > the supply in [0,12]

𝑪𝟑
𝑳𝑶

Key Observations and Challenges

O1. The contribution of each LO job to the demand varies with the mode change instant

O2. It is impossible to calculate the demand without specifying the mode change instant

O3. The demand > the supply in a case does not necessarily yield infeasibility of the scenario

Key observations

Key Observations and Challenges

Q1. How to characterize and calculate the demand in an interval that changes depending on
the mode change instant? (from O1 & O2)

Q2. What is the meaning of the demand > the supply in an interval when the mode change
instant is given? (from O3)

Q3. How to derive a necessary feasibility condition without assuming the mode change
instant is given? (from O2 & O3)

O1. The contribution of each LO job to the demand varies with the mode change instant

O2. It is impossible to calculate the demand without specifying the mode change instant

O3. The demand > the supply in a case does not necessarily yield infeasibility of the scenario

Key observations

Challenges

Our Approach

Q1. How to characterize and calculate the demand ?

Q2. What is the meaning of the demand > the supply ?

Q3. How to derive a necessary feasibility condition ?

Our Approach

Q1. How to characterize and calculate the demand ?

Q2. What is the meaning of the demand > the supply ?

Q3. How to derive a necessary feasibility condition ?

• Specify a range of mode change instant without the target scheduling algorithm (Lemma 4)

• Select two sub-intervals based on a mode change instant 𝑡∗

• Calculate the demand in the target sub-intervals (Lemmas 5,6,7)

Our Approach

Q1. How to characterize and calculate the demand ?

Q2. What is the meaning of the demand > the supply ?

Q3. How to derive a necessary feasibility condition ?

• Specify a range of mode change instant without the target scheduling algorithm (Lemma 4)

• Select two sub-intervals based on a mode change instant 𝑡∗

• Calculate the demand in the target sub-intervals (Lemmas 5,6,7)

• Compare the total demand with the total supply in the target sub-intervals
• Judge the infeasibility of the mode change instant 𝒕∗ (Lemma 8)

Our Approach

Q1. How to characterize and calculate the demand ?

Q2. What is the meaning of the demand > the supply ?

Q3. How to derive a necessary feasibility condition ?

• Specify a range of mode change instant without the target scheduling algorithm (Lemma 4)

• Select two sub-intervals based on a mode change instant 𝑡∗

• Calculate the demand in the target sub-intervals (Lemmas 5,6,7)

• Compare the total demand with the total supply in the target sub-intervals
• Judge the infeasibility of the mode change instant 𝒕∗ (Lemma 8)

• Repeat Lemma 8 for all 𝑡∗ in the mode change instant range
• Check there exists no feasible mode change instant (Infeasibility of the task set) (Theorem 1)

Our Approach
(a) Target 𝑱𝒌

∗

(the job with the earliest release time among all HI jobs
whose execution requirement is strictly larger than LO WCET)

(b) Specify mode change instant range in 𝒕∗ ∈ [3,9]
(Lemma 4)

Our Approach
(a) Target 𝑱𝒌

∗

(the job with the earliest release time among all HI jobs
whose execution requirement is strictly larger than LO WCET)

(b) Specify mode change instant range in 𝒕∗ ∈ [3,9]
(Lemma 4)

(c) Given 𝒕∗, select sub-intervals [0,7] and [7,12]

Our Approach
(a) Target 𝑱𝒌

∗

(the job with the earliest release time among all HI jobs
whose execution requirement is strictly larger than LO WCET)

(b) Specify mode change instant range in 𝒕∗ ∈ [3,9]
(Lemma 4)

(c) Given 𝒕∗, select sub-intervals [0,7] and [7,12]

(d) Calculate demand in the sub-intervals (Lemmas 5,6,7)

Our Approach
(a) Target 𝑱𝒌

∗

(the job with the earliest release time among all HI jobs
whose execution requirement is strictly larger than LO WCET)

(b) Specify mode change instant range in 𝒕∗ ∈ [3,9]
(Lemma 4)

(c) Given 𝒕∗, select sub-intervals [0,7] and [7,12]

(d) Calculate demand in the sub-intervals (Lemmas 5,6,7)

(e) Check infeasibility of the mode change instant 𝒕∗

(Lemma 8)

Our Approach
(a) Target 𝑱𝒌

∗

(the job with the earliest release time among all HI jobs
whose execution requirement is strictly larger than LO WCET)

(b) Specify mode change instant range in 𝒕∗ ∈ [3,9]
(Lemma 4)

(c) Given 𝒕∗, select sub-intervals [0,7] and [7,12]

(d) Calculate demand in the sub-intervals (Lemmas 5,6,7)

(e) Check infeasibility of the mode change instant 𝒕∗

(Lemma 8)

(f) Repeat for all 𝒕∗ ∈ [3,9], check no feasible mode
change instant implying the task set’s infeasibility

(Theorem 1)

▪ Implicit-deadline task sets

Evaluation

▪ Implicit-deadline task sets

Evaluation
Task sets proven infeasible by this paper

▪ Implicit-deadline task sets

Evaluation

• Find several additional infeasible task sets
over a wider range of LO and HI total
utilization which have been proven neither
feasible nor infeasible by any existing studies

• Identify significantly more infeasible task
sets as LO and HI total utilization become
close to 1.0

Task sets proven infeasible by this paper

Evaluation

▪ Constrained-deadline task sets

MC-NFT: collective necessary feasibility test in Theorem 2

MC-NFT-S: simplified version of MC-NFT in Theorem 3

• Exhibit high capability in finding infeasible
task sets
MC-NFT: 56% task sets proven infeasible
MC-NFT-S: 8.2% task sets proven infeasible

among task sets which have been proven
neither feasible nor infeasible
by any existing studies

Evaluation

▪ Constrained-deadline task sets

MC-NFT: collective necessary feasibility test in Theorem 2

MC-NFT-S: simplified version of MC-NFT in Theorem 3

• Exhibit high capability in finding infeasible
task sets
MC-NFT: 56% task sets proven infeasible
MC-NFT-S: 8.2% task sets proven infeasible

among task sets which have been proven
neither feasible nor infeasible
by any existing studies

Benefit of dealing with unique issues
in MC task systems

Conclusion
The paper provides

tight necessary feasibility tests for mixed-criticality (MC) systems on uniprocessor

Conclusion

Trivially infeasible task sets

Feasible task sets by

existing MC scheduling

algorithmsTask sets

Task sets newly proven

infeasible by developing

necessary feasibility tests

The paper provides

tight necessary feasibility tests for mixed-criticality (MC) systems on uniprocessor

The first study that yields non-trivial results
for MC necessary feasibility

Conclusion

Trivially infeasible task sets

Feasible task sets by

existing MC scheduling

algorithmsTask sets

Task sets newly proven

infeasible by developing

necessary feasibility tests

The paper provides

tight necessary feasibility tests for mixed-criticality (MC) systems on uniprocessor

The first study that yields non-trivial results
for MC necessary feasibility

Investigate characteristics of MC systems
in terms of necessary feasibility

Identify new challenges posed by such
characteristics of MC task systems

Establish foundations of necessary
feasibility tests for MC task systems

Conclusion

Trivially infeasible task sets

Feasible task sets by

existing MC scheduling

algorithmsTask sets

Task sets newly proven

infeasible by developing

necessary feasibility tests

The paper provides

tight necessary feasibility tests for mixed-criticality (MC) systems on uniprocessor

The first study that yields non-trivial results
for MC necessary feasibility

Investigate characteristics of MC systems
in terms of necessary feasibility

Identify new challenges posed by such
characteristics of MC task systems

Establish foundations of necessary
feasibility tests for MC task systems

