
Pipelined Data-Parallel CPU/GPU
Scheduling for Multi-DNN Real-

Time Inference

Yecheng Xiang and Hyoseung Kim

University of California, Riverside

RTSS 2019

Introduction
Ø Running multiple DNN models on a heterogeneous platform

(e.g., NVIDIA TX2: 4 Cortex-A57, 2 Denver CPU cores, and a
Pascal GPU) is gaining much interest.
Ø E.g., self-driving car: multiple sensing

tasks, vision-based perception algorithms.

Ø To ensure the usefulness and correctness, timely DNN
inference execution is a must.
Ø A bounded tail latency, i.e., Worst-Case Response Time, is needed.

Ø Efficient utilization of computing resources is important.
2

DNN Inference

Ø Each DNN model is composed of several layers – input layer, hidden
layers and output layer.

Ø Execution pattern of an inference job: forward propagation from input to
output layers.

Ø Execution time and response time of each layer may differ.

3
Input Layer Hidden Layers Output Layer

The Status Quo

Modern deep learning inference frameworks (e.g., Torch, Tensorflow, and
Caffe)

- Handle inference jobs in a sequential manner.

- One separate process per DNN model.
- CPU: multi-threading BLAS libraries (e.g., OpenBLAS) offer limited control over

real-time tasks accessing different DNN models.
- GPU: concurrent GPU kernel execution due to different CUDA contexts.

- No prioritization or real-time support.

4

The Status Quo – CPU

5

Long Response Time

Long Blocking Time

The Status Quo – GPU

6

Long Response Time

No
Concurrent
Kernel
Execution

Prior Work
Ø S3DNN1, Case Study in autonomous driving applications2

Ø Efforts towards improving the average-case response time by improving scheduling on GPUs
(e.g., supervised streaming, pipelining, and parallelism).

Ø Only considers one type of DNN model, no concurrent requests to mulple DNN models.
Ø Only GPU is considered and utilized.

Ø Glimpse3, MCDNN4

Ø Mobile DNN frameworks collaborating with the cloud to improve latency.
Ø No real-time schedulability guarantee.

Ø DNN Optimization Techniques5,6

Ø Compressing DNN models or layers, trading off output accuracy for performance gain.
Ø Reduces the execution time of individual jobs, but the scheduling problem of concurrent jobs

remains.

7

[1] H. Zhou et al. S3DNN: Supervised streaming and scheduling for GPU-accelerated real-time DNN workloads. (RTAS, 2018)
[2] M. Yang et al. Re-thinking CNN frameworks for time-sensitive autonomous-driving applications: Addressing an industrial challenge. (RTAS, 2019)
[3] T. Y.-H. Chen et al. Glimpse: Continuous, real-time object recognition on mobile devices. In ACM Conf. (SenSys, 2015)
[4] S. Han et al. MCDNN: An approximation-based execution framework for deep stream processing under resource con- straints. (MobiSys, 2016)
[5] S. Yao et al. Compressing deep neural network structures for sensing systems with a compressor-critic framework. (CoRR, 2017)
[6] Y. Kim et al. Compression of deep convolutional neural networks for fast and low power mobile applications. (CoRR, 2015)

Our Contributions
DART: a real-time multi-DNN inference framework for heterogeneous
CPU/GPU platforms
- Brings algorithmic improvements into real-time DNN scheduling.
- First work to bound WCRT and ensure schedulability with high throughput.

Details:
- Introduces new abstractions to deal with different resource requirements of

layers of DNNs and to facilitate the co-utilization of CPU and GPU.
- Gives a systematic formulation of real-time DNN scheduling as a distributed

acyclic scheduling problem.
- Develops resource management algorithms to i) balance the contention

across processors and ii) allocate resources to ensure and improve real-time
schedulability and response time. 8

System Model
● Heterogeneous multi-core system with single GPU

● Main memory is shared among all CPUs

● Task type: Real-time(RT), best-effort(BE)

9

General Task Model

GPU Task Model

WCET, min inter-arrival time, deadline, #of layers

H2D memcpy, Kernel execution, misc. CPU operations, D2H memcpy

Overview

10

Key Ideas:
- Partition layers into multiple stages.

- A stage can be processed on different
computing nodes.

- Dynamic-programming based approach
to match stages to nodes to maximize the
performance while meeting the real-time
constraints.

DART – Scheduling Architecture I

11

Stage 1 Stage 2 Stage 3

- Partition the DNN models of each task 𝜏" into stages

Inter-node pipelining

DART – Scheduling Architecture II

12

Assign the stages of different tasks to the nodes. Note that stages can skip nodes
when needed. (The assignment is determined by the allocation algorithm.)

Scheduling Architecture III

13

- Two task classes – RT and BE, where RT is strictly prioritized over BE.

- RT workers and BE workers for each task class.
- Each RT/BE worker is statically allocated to its allocated node for

the execution of RT/BE tasks respectively.
- RT workers can preempt BE workers on the same node.
- Task execution within each worker is non-preemptive.

- RT worker uses deadline-monotonic (DM) scheduling policy.
- Deterministic guarantees under overload condition

- BE worker uses earliest-deadline-first (EDF) scheduling policy.
- Higher utilization

- Batched execution is also enabled for BE tasks.
- Maximize throughput

CPU Scheduling Example

14

Two type of
Tasks: RT & BE
Task preemption

RT task deadline is met

Better CPU utilization

Developed OpenBLAS-rt:
a real-time extension of
OpenBLAS

GPU Scheduling Example

15

CUDA streams +
shared CUDA context
-> Concurrent kernel
execution

High-priority CUDA stream
-> Improved response time

Multiple low-priority
CUDA streams ->
Improved throughput
and GPU utilization

Allocation Algorithm -- Designing Task Stages

Approach: Formulate as a dynamic programming algorithm

- M [n, k] denotes the the utilization of the most loaded node when the first n layers of a task 𝜏" are
allocated to the first k nodes.

Goals:
- Construct the stages of task 𝜏"
- Allocate each stage to a node
- Balance utilization of nodes after allocation

- Reduce contention on nodes.

Solution and stage allocation are found by: M [𝒏 = 𝑳𝒊, 𝒌 = 𝑵𝒑].
16

Allocation Algorithm -- Finding a Node Configuration

Weighted WCRT:

Task average utilization:

17

Schedulability Analysis

1. P. Jayachandran and T. Abdelzaher. Transforming distributed acyclic systems into equivalent uniprocessors
under preemptive and non-preemptive scheduling. In Euromicro Conference on Real-Time Systems (ECRTS), 2008.

- The execution sequence of stages of a task across nodes can be modeled as a
directed acyclic path in a graph (DAG) of nodes.

- We use the schedulability analysis in [1] which is based on the non-preemptive DAG
delay composition theorem and reduces the DAG into an equivalent uniprocessor
system.

- We apply analysis to our system and bound the worst-case response time of 𝑹𝒊 of a
task 𝝉𝒊 by:

18

DART – Miscellaneous Components

i) Layer-wise Execution Time Profiling
- Construct a WCET database for DART runtime.
- Estimate WCET of individual layers for candidate node configurations.

ii) Admission Control
- Ensure the schedulability of all the admitted RT tasks.

iii) Run-time Task Enforcement
- Run-time execution time of each task monitored by DART.
- DART demotes a RT task to BE task if it detects a execution time exceedance.
- For execution time exceedance of BE tasks, DART changes deadline to infinite

to mitigate the impact on other BE tasks. 19

Evaluation – Baselines

● BaseCPU
● BaseGPU

○ They both represent state-of-the-art inference frameworks. (e.g., TensorRT
Inference Server and TensorFlow Serving)

○ One run queue per DNN model

○ One process/instance per DNN model

○ Priority queue added to make a fair comparison with DART (RT tasks are
prioritized over BEs while waiting in the queue)

20

Evaluation -- Experiment Setup
Hardware

- X86 Server

- Xeon 8-core 2.1GHZ E2620 v4 CPU
- 32GB RAM
- GTX 1080

- ARM Server (NVIDIA TX2)
- 4 ARM Cores (Quad ARM® A57)
- 2 HMP Denver 2 Cores
- Integrated Pascal GPU

21

DNN Models
- Alexnet
- Lenet
- VGGnet
- PilotNet

Evaluation – Runtime Overhead

22

• Communication overhead is highest between two Denver cores, however it is
still acceptably small compared to typical DNN execution time.

• Preemption overhead is marginable, yet is still modeled in in Eq. (4).

Evaluation – DNN Execution Time Profiling

23

• Overall, the speedup diminishes while the number of cores increases.
• Speedup from an increased number of CPU cores varies significantly by layer.

• E.g., layer 3 & 5 do not get noticeable benefit by increasing the number of
A57 cores. While layer 2 and 4 have speedups with more CPUS.

• Performance differs significantly among different types of processors.
• GPU has the best performance for most layers.
• Denver CPU cores overall perform better than ARM A57 CPUs.
• However, GPUs might be slower than CPUs for some layers. (Layer 5)

Evaluation – Schedulability Experiments

24

- Results are based on random-generated tasksets.
- DART dominates the baseline in schedulability.

Evaluation – Response Time and Throughput

25

- Consider a mixture of real-time (RT) and best-effort (BE) tasks on Xeon and TX2 platforms.
- We plot the response time CDF of the RT tasks and measure the throughput of BE tasks.
- We enable batching when executing on GPU with configurable batch sizes of 1, 8, 16, 32.

The jobs of the BE tasks arrive in a back-to-back manner to
maximize the throughput.

Evaluation – Response Time and Throughput

26

DART achieves 98.5%
reduction in the
maximum observed
response time from
BaseGPU with the
batch size of 32.

Evaluation – Response Time and Throughput

27

- The throughput improvement from batching diminishes after batch size reaches 16.
- DART achieves as much as 17.9% higher throughput than BaseGPU for alexnet_be_1

with the batch size of 32.

Note: In the figure, the b_x denotes the execution is with a batch size of x.

More results can be found in the paper.

Conclusions

- We present DART, a real-time DNN inference framework that offers
deterministic response time and schedulability analysis to real-time DNN
inference tasks and supports scheduling concurrent execution of various
DNN models.

- We have implemented the scheduling architecture of DART and its key
components, including pipeline stage design, node configuration,
execution time profiling, admission control, and runtime enforcement, on
Intel Xeon and Nvidia TX2 platforms.

- Experimental results have shown that DART dominates the baselines in
both real-time performance and throughput.

28

Future Work

- Remote machine can be modeled as one node in the pipeline thus can be
used to address the computational limit of local hardware.

- Other hardware accelerators can be utilized (e.g., FPGAs).

- Shared memory resources (e.g., caches and memory buses) and their
performance interference are worth investigating to improve the CPU
parallelization performance.

29

Questions?

THANK YOU!

30
Email us at: yxian013@ucr.edu, hyoseung@ucr.edu

