RTSS 2019 ADMM-Based Decentralized Electric Vehicle Charging with Trip Duration Limits

Gaoqi He^{1,2}, Zhifu Chai¹, Xingjian Lu², Fanxin Kong³, Bing Sheng⁴

¹East China Normal University, China ²East China University of Science and Technology, China ³Syracuse University, US ⁴Shanghai Jiaotong University, China fkong03@syr.edu

Background
Problem Formulation
Algorithm Design
Experiments
Conclusion

Background

DSO: Distribution System Operator/Owner TSO: Transmission System Operator DMU: Decision-making Unit

- Charging coordination is essential for EV owners to reduce charging fee and charging duration.
- Most existing works is confined to finding CSs to optimize the two parts individually.

Related Works

most of them focus on the above aspects separately

Our Motivation: exploring how to jointly minimize charging duration and charging fee for trips with scheduled deadlines.

Contributions

- A novel charging coordination problem that jointly optimize charging duration and charging fee, which is formulated as a 0-1 Integer Linear Programming problem.
- We propose a novel distributed EV charging algorithm based on ADMM, which gradually converges to the optimal solution.
 - The extensive experimental studies based upon real-life transport network data are conducted.

Background
Problem Formulation
Algorithm Design
Experiments
Conclusion

Basic definitions

GC: global coordinator (receive requests and scheduling) **CS:** charging station(with a CS Agent to collect necessary information) Four zones: industrial, commercial, residential and office zone **Regional time-of-use price model**: electricity price varies in different zones and different time transportation network as a graph G = (E, L)Request: REQ(Cap,SOC^{cur}, a, I^{req}, I^{des}, T^{deadline} Battery Destination Unit energy deadline

location

consumption

capacity

Typical procedure

stage1: EVs send requests, GC forwards requests to all CS Agents, all CS Agents and GC coordinate to get the optimal CS
Stage2: EV heads to the CS, updates its information periodically
Stage3: Once arrived, the EV joins the waiting queue. Or stage4 (directly go to charging)
Stage5: After charging, the EV heads on to the destination
Stage6: Finally, the EV reaches the destination

Problem formulation

zero-one linear programming problem

Background
Problem Formulation
Algorithm Design
Experiments
Conclusion

ADMM Framework

ADMM is well suited to distributed convex optimization and especially the large-scale problems in statistics, machine learning and related areas.

> $\min f(x) + g(z)$ s.t. Ax + Bz = c $x \in C_1, z \in C_2$

ADMM solves the problem with the iterations

$$x^{k+1} = \arg\min_{x \in C_1} L_{\rho}(x, z_k, \lambda_k)$$
$$z^{k+1} = \arg\min_{z \in C_2} L_{\rho}(x_k, z, \lambda_k)$$
$$\lambda_{k+1} = \lambda + \rho(Ax + By - c)$$

Problem Reformulation

 Introduce a new set of auxiliary variables z_j, Reformulate the optimization to use ADMM

min
$$\sum_{j=1}^{M} (\gamma_j \cdot \theta \cdot t_j^{trip} + z_j \cdot (1-\theta) \cdot c_j)$$
(20a)

s.t.
$$\gamma_j = z_j$$
 (20b)

$$\sum_{j=1}^{m} (D_j \cdot \gamma_j) = 0, 0 \le \gamma_j \tag{20c}$$

$$\sum_{j=1}^{M} z_j = 1, 0 \le z_j \tag{20d}$$

$$0 \le \theta \le 1 \tag{20e}$$

Solving process with iterations

y-minimization, z-minimization, dual variable updating

Subproblem P1

• k+1-th iteration, the γ -minimization:

Each CS Agent independently solve the subproblem (P1)

$$(P_1) \quad \min_{\gamma_j} \quad \gamma_j \cdot \theta \cdot t_j^{trip} + \frac{\rho}{2} (\gamma_j - z_j^k + \frac{\lambda_j^k}{\rho})^2$$

s.t. $0 \le \gamma_j$
$$\sum_{j=1}^M (D_j \cdot \gamma_j) = 0$$

solution to P1

Algorithm 3: Obtain k+1-th iteration solution to (23a), denoted as γ_i^{k+1} . **Input:** z_i^k, λ_i^k $/* z_i^k$: k-th iteration solution to (27a); */ /* λ_i^k : dual variable; */ Output: γ_i^{k+1} ; /* γ_i^{k+1} : decision variable associated with (23a) */ 1 Initialize $\eta_{min} = -(\theta \cdot t_i^{trip} + \rho + \lambda_i^k)$ and $\eta_{max} = -(\theta \cdot t_i^{trip} - \rho + \lambda_i^k);$ 2 while $\eta_{max} - \eta_{min} \ge 10^{-10}$ do $\eta = (\eta_{max} + \eta_{min})/2;$ 3 **for** $j = 1, 2, \dots, M$ **do** 4 Obtain γ_i according to (25); 5 if $\sum_{j=1}^{M} (D_j \cdot \gamma_j) > 0$ then 6 Set $\eta_{min} = \eta$; 7 else if $\sum_{j=1}^{M} (D_j \cdot \gamma_j) < 0$ then 8 Set $\eta_{max} = \eta$; 9 else 10 Set $\eta_{max} = \eta_{min}$; 11

Subproblem P2

k+1-th iteration, the Z-minimization: Each CS Agent independently solve the subproblem (P2)

$$(P_2) \quad \min_{z_j} \quad z_j \cdot (1 - \theta) \cdot c_j + \frac{\rho}{2} (\gamma_j^{k+1} - z_j + \frac{\lambda_j^k}{\rho})^2$$

s.t. $0 \le z_j, \sum_{j=1}^M z_j = 1$

solution to P2

Algorithm 4: Obtain k+1-th iteration solution to (27a), denoted as z_i^{k+1} .

Input: $\gamma_i^{k+1}, \lambda_i^k$ /* γ_i^{k+1} : k+1-th iteration solution to (23a) */ $/* \lambda_i^k$: dual variable */ Output: z_i^{k+1} ; $/* z_i^{k+1}$: k+1-th iteration solution to (27a) */ 1 Initialize $\eta_{min} = -((1-\theta)c_j + \rho + \lambda_j^{k+1})$ and $\eta_{max} = -((1-\theta)c_j - \rho + \lambda_j^{k+1});$ 2 while $\eta_{max} - \eta_{min} \ge 10^{-10} \text{ do}$ $\eta = (\eta_{max} + \eta_{min})/2;$ 3 for $j = 1, 2, \dots, M$ do 4 Obtain z_i according to (29); 5 if $\sum_{j=1}^{M} z_j > 1$ then 6 Set $\eta_{min} = \eta$; 7 else if $\sum_{j=1}^{M} z_j < 1$ then 8 Set $\eta_{max} = \eta$; 9 else 10 $\eta_{max} = \eta_{min};$ 11

dual variable updating

 after obtaining the optimal γ and z, the final step is to perform the dual variable update by each CS agent

$$\lambda_j^{k+1} = \lambda_j^k + \rho(\gamma_j^{k+1} - z_j^{k+1})$$

Background
Problem Formulation
Algorithm Design
Experiments
Conclusion

Experiments

- Evaluation Settings
 - Simulator based on Opportunistic Network Environment
 - a period of 24h on the scenario of Helsinki city
 - 6 CSs, each equipped with 5 charging slots, charging power 60 kw.

Experiments

- Comparison methods
 - M&C: (ours)
 - MTD: minimizing trip duration
 - MF: minimizing charging fee
 - CWT: minimizing charging waiting time
 - R: random selection
- Metrics
 - Average Trip Duration
 - Average Charging Fee
 - Weighted Average Cost
 - Number of Trips Satisfying the Deadline

Convergence Evaluation

converges quickly to near the optimum

Influence of Trip Deadline

Fig. 5. Normalized number of trip results generated by different methods that satisfy trip deadline when EV drivers set strict and relaxed deadlines

- Only our method (M&C) and MTD can strictly satisfying the deadline limits
- For strict deadline, MF、CWT、R is even worse

Influence of trip duration weight 0

Only our method (M&C) can help to save the weighted average cost when θ varies

Influence of charging power

- Only our method (M&C) gains the advantages of saving money and trip duration
- save more weighted average cost than other methods when the charging power β varies

Influence of charging slots

- Only our method (M&C) gains the advantages of saving money and trip duration
- save more weighted average cost than other methods when charging slots σ varies

Background
Problem Formulation
Algorithm Design
Experiments
Conclusion

Conclusion

- We study a novel charging coordination problem that jointly optimize charging duration and charging fee.
- We formulated the charging coordination problem as a 0-1 Integer Linear Programming
- We propose a distributed EV charging algorithm based on ADMM, which gradually converges to the optimal solution
- The experiments demonstrate the effectiveness and the efficiency of our proposed method.

Future work

The effect of charging manners to the power grid