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Background
@
L

Aggregator

Signals

DSO: Distribution System Operator/Owner
TSO: Transmission System Operator
DMU: Decision-making Unit

» Charging coordination is essential for EV owners to
reduce charging fee and charging duration.

» Most existing works is confined to finding CSs to
optimize the two parts individually.




Background

Related Works

: Considering
Reducing charging
charging fee deadlines

* [6]-]7] * [10]-[11] * [12]-[13]

Minimizing

waiting time

most of them focus on the above aspects separately

= Our Motivation: exploring how to jointly minimize charging
duration and charging fee for frips with scheduled deadlines.




Contributions

» A novel charging coordination problem that jointly optimize
charging duration and charging fee, which is formulated as
a 0-1 Integer Linear Programming problem.

» We propose a novel distributed EV charging algorithm
based on ADMM, which gradually converges to the optimal
solution.

The extensive experimental studies based upon real-life
transport network data are conducted.
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Basic definitions

[ request |
response

GC: global coordinator (receive requests and scheduling)

CS: charging station(with a CS Agent to collect necessary information)
Four zones: industrial, commercial, residential and office zone
Regional time-of-use price model: electricity price varies in different
zones and different time

transportation network as a graph G = (E, L)

Request: REQ

P SOCecur , /req/ /des/ Tdeodline )
Battery ’ Unit energy ’ Destination 4\‘ : }
capacity consumption location sleziline




Typical procedure

[ request |
response

stagel: EVs send requests, GC forwards requests to all CS Agents,
all CS Agents and GC coordinate to get the optimal CS

Stage2: EV heads to the CS, updates its information periodically
Stage3: Once arrived, the EV joins the waiting queue. Or stage4 (
directly go to charging)

Stageb: After charging, the EV heads on to the destination
Stage6: Finally, the EV reaches the destination



Problem formulation

zero-one linear programming problem

trip duration
M
. ¢ TP

Charging fee }

min E vi - (@-¢ +(1—8)-c)
71=1
Constraint:
s.t. E Y = 1,9 € {O, 1} no more than
1 one CS can
_ \\ selected y
0<60<1
trip deadline
(P oy & T -

Trip duration
constraint
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ADMM Framework

» ADMM is well suited to distributed convex optimization

and especially the large-scale problems in statistics,
machine learning and related areas.

min f(x) 4+ g(2)
st. Ar+ Bz =c
x€(Cq,z€(Cy

» ADMM solves the problem with the iterations

2+l = are min Ly(z, 2k, Ax)
reC

21 — arg min L,(zg,z, M)
z€(Cs

Ak+1 =A + p(Axz + By — ¢)




Problem Reformulation

= |nfroduce a new set of auxiliary variables z;
Reformulate the optimization to use ADMM

M
min Z(",j -0 - l‘;rip +2ij-(1—0)-c;) (20a)
7=1
s.t. v = zj (20b)
M
Y (Dj-v5) =0,0<1; (20c)
j=1
M
Y 2;=1,0<z (20d)
j=1
<@g <1 (20e)

» Solving process with iterations
y-minimization, z-minimization, dual variable updating




Subproblem P

» k+1-th iferation, the y-minimization:

Each CS Agent independently solve the subproblem (P1)

k
: ' P k ’\j 2
(Py) min ~;-60- e g —(v; — 25 + —)
Vi . J e , p
St 0 S A;"j




solution 1o P1

Algorithm 3: Obtain k+1-th iteration solution to

(23a). denoted as 1.;."’“.

Input: =% )}

/% 2% : k-th iteration solution to (27a):

/% A%+ dual variable:;

Output: 7+

/* f*,-;f“ . decision variable associatecl with (23a)
1 Initialize 7, = — (0 - t;”p +p+ A¥)) and

Tmax = —(9 . t;'rzp — P+ /\;”),

2> while 7,00 — Nmin > 10719 do

3 1 = (’Umaa: + 7]7711'.71)/2;

4 for j =1.2.--- ., M do

5 Obtain ~; according to (25);
6 | if Y7L (D;j-v;) >0 then

7 o i R, ;o

s | else if 307 (D) -v;) < 0 then
9 el Bhpan =1

10 else

11 B Set Nmaxz = Nlmin-




Subproblem P2

» k+1-th iteration, the Z-minimization:

Each CS Agent independently solve the subproblem (P2)

(P2)

15
- (- \ . P, k+1 Ajz
min - zj - (1-0)-cj + 5 (5" =2 + L)
<3 & /)

5.5 &= :j.z,:j = ]

j=1



solution 1o P2

Algorithm 4: Obtain k+1-th iteration solution to
(27a). denoted as z**1.

J
Input: f\,-;i”'“. A%
ol ﬂ,f;."“ : k+1-th iteration solution to (23a) '
/¥ )\j‘ . dual variable o
Output: =+
/# 2R . k+1-th iteration solution to (27a) ]

;-IJ

1 Initialize Nmin = —((1 —0)c; + p + /\;”.'H) and
Nmaz = —((1 — 0)c; — p+ A5T1):
2 while 1,00 — Dmin > 10710 do

3 1] = (Uma:c + Umin)/Ql

4 for y=1.2,--- .M do

5 Obtain z; according to (29):
6 | if> 0,z >1 then

7 Sel i = 105

s | else if Zj‘il zj < 1 then

9 ‘ el Mg = %

10 else

11 L Nmaz = Nmin-




dual variable updating

» qffer obtaining the optimal y and z, the final step is
to perform the dual variable update by each CS
agent

k41 _ \k k41l k41
AjT = A el =)
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Experiments

» Fvaluation Settings

®» Simulator based on Opportunistic Network
Environment

» O period of 24h on the scenario of Helsinki city

» 6 CSs, each equipped with 5 charging slofs,
charging power 60 kw.
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Experiments

» Comparison methods

» M&C: (ours)

= MTD: minimizing trip duration

= MF: minimizing charging fee

CWT: minimizing charging waiting time

» R: random selection

» Metrics
» Average Trip Duration
» Average Charging Fee
» \\Veighted Average Cost
» Number of Trips Satisfying the Deadline



Convergence Evaluation

CIDF
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converges quickly to near the optimum



Influence of Trip Deadline

} ]

e strict deadline
0 relaxed deadline

M&C MTD MF CWT R

Fig. 5. Normalized number of trip results generated by different methods that
satisfy trip deadline when EV drivers set strict and relaxed deadlines

= Only our method (M&C) and MTD can strictly satisfying the
deadline limits

» For strict deadline, MF, CWT, R is even worse




charging fee

Influence of trip duration weight 6
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= Only our method (M&C) can help to save the weighted
average cost when 6 varies



Influence of charging power
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= Only our method (M&C) gains the advantages of saving
money and trip duration

» save more weighted average cost than other methods
when the charging power B varies




Influence of charging slofts
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= Only our method (M&C) gains the advantages of saving
money and trip duration

» save more weighted average cost than other methods
when charging slots o varies
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Conclusion

» We study a novel charging coordination problem
that jointly optimize charging duration and charging
fee.

» We formulated the charging coordination problem
as a 0-1 Integer Linear Programming

» We propose a distributed EV charging algorithm
ased on ADMM, which gradually converges to the
optimal solution

The experiments demonstrate the effectiveness and
the efficiency of our proposed method.

Future work

» The effect of charging manners to the power grid



