ADMM-Based Decentralized Electric Vehicle Charging with Trip Duration Limits

Gaoqi He1,2, Zhifu Chai1, Xingjian Lu2, Fanxin Kong3, Bing Sheng4

1East China Normal University, China
2East China University of Science and Technology, China
3Syracuse University, US
4Shanghai Jiaotong University, China
fkong03@syr.edu
Outline

- Background
- Problem Formulation
- Algorithm Design
- Experiments
- Conclusion
Background

- **Charging coordination** is essential for EV owners to reduce charging fee and charging duration.
- Most existing works is confined to finding CSs to optimize the two parts individually.
Background

Our Motivation: exploring how to jointly minimize charging duration and charging fee for trips with scheduled deadlines.
Contributions

- A novel charging coordination problem that jointly optimize charging duration and charging fee, which is formulated as a 0-1 Integer Linear Programming problem.

- We propose a novel distributed EV charging algorithm based on ADMM, which gradually converges to the optimal solution.

- The extensive experimental studies based upon real-life transport network data are conducted.
Outline

- Background
- Problem Formulation
- Algorithm Design
- Experiments
- Conclusion
Basic definitions

GC: global coordinator (receive requests and scheduling)

CS: charging station (with a CS Agent to collect necessary information)

Four zones: industrial, commercial, residential and office zone

Regional time-of-use price model: electricity price varies in different zones and different time

Transportation network as a graph $G = (E, L)$

Request $REQ(Cap, SOC_{\text{cur}}, \alpha, l_{req}, l_{des}, T_{\text{deadline}})$.

- **Battery capacity**
- **Unit energy consumption**
- **Destination location**
- **Deadline**
Typical procedure

stage1: EVs send requests, GC forwards requests to all CS Agents, all CS Agents and GC coordinate to get the optimal CS.

Stage2: EV heads to the CS, updates its information periodically.

Stage3: Once arrived, the EV joins the waiting queue. Or **stage4** (directly go to charging).

Stage5: After charging, the EV heads on to the destination.

Stage6: Finally, the EV reaches the destination.
Problem formulation

Zero-one linear programming problem

\[
\begin{align*}
\text{min} & \quad \sum_{j=1}^{M} \gamma_j \cdot (\theta \cdot t_j^{\text{trip}} + (1 - \theta) \cdot c_j) \\
\text{s.t.} & \quad \sum_{j=1}^{M} \gamma_j = 1, \gamma_j \in \{0, 1\} \\
& \quad 0 \leq \theta \leq 1 \\
& \quad t_j^{\text{trip}} \cdot \gamma_j \leq T^{\text{deadline}}
\end{align*}
\]
Outline

- Background
- Problem Formulation
- Algorithm Design
- Experiments
- Conclusion
ADMM Framework

- **ADMM** is well suited to distributed convex optimization and especially the large-scale problems in statistics, machine learning and related areas.

\[
\begin{align*}
\min & \quad f(x) + g(z) \\
\text{s.t.} & \quad Ax + Bz = c \\
& \quad x \in C_1, z \in C_2
\end{align*}
\]

- **ADMM** solves the problem with the iterations:

\[
\begin{align*}
x^{k+1} &= \arg\min_{x \in C_1} L_\rho(x, z_k, \lambda_k) \\
z^{k+1} &= \arg\min_{z \in C_2} L_\rho(x_k, z, \lambda_k) \\
\lambda_{k+1} &= \lambda + \rho (Ax + By - c)
\end{align*}
\]
Problem Reformulation

- Introduce a new set of **auxiliary variables** \(z_j \), Reformulate the optimization to use ADMM

\[
\begin{align*}
\min & \quad \sum_{j=1}^{M} (\gamma_j \cdot \theta \cdot t_j^{trip} + z_j \cdot (1 - \theta) \cdot c_j) \\
\text{s.t.} & \quad \gamma_j = z_j \\
& \quad \sum_{j=1}^{M} (D_j \cdot \gamma_j) = 0, 0 \leq \gamma_j \\
& \quad \sum_{j=1}^{M} z_j = 1, 0 \leq z_j \\
& \quad 0 \leq \theta \leq 1
\end{align*}
\]

- Solving process with iterations
 - \(\gamma \)-minimization,
 - \(z \)-minimization,
 - dual variable updating
Subproblem P1

- k+1-th iteration, the γ-minimization:

Each CS Agent independently solve the subproblem (P1)

\[
(P_1) \min_{\gamma_j} \gamma_j \cdot \theta \cdot t_j^{\text{trip}} + \frac{\rho}{2}(\gamma_j - z_j^k + \frac{\lambda_j^k}{\rho})^2
\]

s.t. \quad 0 \leq \gamma_j

\[
\sum_{j=1}^{M} (D_j \cdot \gamma_j) = 0
\]
solution to P1

Algorithm 3: Obtain $k+1$-th iteration solution to (23a), denoted as γ^{k+1}_j.

Input: z^k_j, λ^k_j
/* z^k_j: k-th iteration solution to (27a); */
/* λ^k_j: dual variable; */

Output: γ^{k+1}_j
/* γ^{k+1}_j: decision variable associated with (23a) */

1. **Initialize**

 \[
 \eta_{\min} = - (\theta \cdot t^{\text{trip}}_j + \rho + \lambda^k_j) \]
 \[
 \eta_{\max} = - (\theta \cdot t^{\text{trip}}_j - \rho + \lambda^k_j) \]

2. **while** $\eta_{\max} - \eta_{\min} \geq 10^{-10}$ **do**

3. \[
 \eta = (\eta_{\max} + \eta_{\min})/2;
 \]
4. **for** $j = 1, 2, \ldots, M$ **do**

5. \[
 \text{Obtain } \gamma_j \text{ according to (25)};
 \]
6. **if** $\sum_{j=1}^M (D_j \cdot \gamma_j) > 0$ **then**

7. \[
 \text{Set } \eta_{\min} = \eta;
 \]
8. **else if** $\sum_{j=1}^M (D_j \cdot \gamma_j) < 0$ **then**

9. \[
 \text{Set } \eta_{\max} = \eta;
 \]
10. **else**
11. \[
 \text{Set } \eta_{\max} = \eta_{\min};
 \]
Subproblem P2

- \(k+1 \)-th iteration, the \(Z \)-minimization:

 Each CS Agent independently solve the subproblem (P2)

\[
(P_2) \quad \min_{z_j} \quad z_j \cdot (1 - \theta) \cdot c_j + \frac{\rho}{2} \left(\gamma_j^{k+1} - z_j + \frac{\lambda_j^k}{\rho} \right)^2 \\
\text{s.t.} \quad 0 \leq z_j, \quad \sum_{j=1}^{M} z_j = 1
\]
Algorithm 4: Obtain k+1-th iteration solution to (27a), denoted as z_j^{k+1}.

Input: γ_j^{k+1}, λ_j^k
/* γ_j^{k+1} : k+1-th iteration solution to (23a) */
/* λ_j^k : dual variable */

Output: z_j^{k+1}
/* z_j^{k+1} : k+1-th iteration solution to (27a) */

1. Initialize $\eta_{\text{min}} = -((1 - \theta) c_j + \rho + \lambda_j^{k+1})$ and $\eta_{\text{max}} = -((1 - \theta) c_j - \rho + \lambda_j^{k+1})$;
2. while $\eta_{\text{max}} - \eta_{\text{min}} \geq 10^{-10}$ do
 3. $\eta = (\eta_{\text{max}} + \eta_{\text{min}})/2$
 4. for $j = 1, 2, \ldots, M$ do
 Obtain z_j according to (29);
 5. if $\sum_{j=1}^{M} z_j > 1$ then
 Set $\eta_{\text{min}} = \eta$
 6. else if $\sum_{j=1}^{M} z_j < 1$ then
 Set $\eta_{\text{max}} = \eta$
 7. else
 $\eta_{\text{max}} = \eta_{\text{min}}$;
dual variable updating

- after obtaining the optimal γ and z, the final step is to perform the dual variable update by each CS agent.

\[
\lambda_{j}^{k+1} = \lambda_{j}^{k} + \rho(\gamma_{j}^{k+1} - z_{j}^{k+1})
\]
Outline

- Background
- Problem Formulation
- Algorithm Design
- Experiments
- Conclusion
Experiments

- **Evaluation Settings**
 - Simulator based on Opportunistic Network Environment
 - A period of 24h on the scenario of Helsinki city
 - 6 CSs, each equipped with 5 charging slots, charging power 60 kw.

The regional time-of-use electricity price.
Experiments

- **Comparison methods**
 - **M&C**: (ours)
 - **MTD**: minimizing trip duration
 - **MF**: minimizing charging fee
 - **CWT**: minimizing charging waiting time
 - **R**: random selection

- **Metrics**
 - **Average Trip Duration**
 - **Average Charging Fee**
 - **Weighted Average Cost**
 - **Number of Trips Satisfying the Deadline**
Convergence Evaluation

converges quickly to near the optimum
Influence of Trip Deadline

- Only our method (M&C) and MTD can strictly satisfying the deadline limits.
- For strict deadline, MF, CWT, R is even worse.
Influence of trip duration weight θ

- Only our method (M&C) can help to save the weighted average cost when θ varies.
Influence of charging power

- Only our method (M&C) gains the advantages of saving money and trip duration
- save more weighted average cost than other methods when the charging power β varies
Influence of charging slots

- Only our method (M&C) gains the advantages of saving money and trip duration
- save more weighted average cost than other methods when charging slots σ varies
Outline

- Background
- Problem Formulation
- Algorithm Design
- Experiments
- Conclusion
Conclusion

- We study a novel charging coordination problem that jointly optimize charging duration and charging fee.
- We formulated the charging coordination problem as a 0-1 Integer Linear Programming
- We propose a distributed EV charging algorithm based on ADMM, which gradually converges to the optimal solution
- The experiments demonstrate the effectiveness and the efficiency of our proposed method.

Future work

- The effect of charging manners to the power grid