
Segment Streaming for the Three-Phase 
Execution Model: Design and Implementation

Muhammad R. Soliman
Giovani Gracioli

    Rohan Tabish
    Rodolfo Pellizzoni
    Marco Caccamo

Authors:
 



Outline

● Introduction & Motivation

● Streaming Execution Model

● OS Programming Interface

● Task Set Segmentation

● Evaluation

● Conclusion & Future Work



Introduction & 
Motivation

● Emerging Real-Time Applications

● Three-Phase Model

● Task Segmentation

● Example

● Previous Work Limitations

● Paper Contribution



Emerging Real-Time Applications

● Requirements: high performance, timing guarantees, and usually high usage of I/O devices (such as 

cameras and LIDAR sensors) and memory requirements. 

● Platforms: Multiprocessor Systems-on-Chip (MPSoC) with a feature-rich environment, composed 

of multiple processing elements, high-bandwidth I/O devices and memories, and DMA engines.

● Challenges: shared resources that represent bottlenecks in terms of performance and 

predictability.



Three-Phase Model

● Divides the task execution into 3 phases:
○ LOAD: Load the required code and data to SPM
○ COMPUTE: Execute the task directly from SPM
○ UNLOAD: Copy back the modified data

● Avoids contention at the main memory by sequentializing the load 

and unload phases of different processors.

● In a multiprocessor system, each processor is assumed to have a local 

memory (SPM/cache) and the code/data is move to/from the local 

SPM to the main memory during LOAD/UNLOAD phases. Arbitration 

techniques are used to share the memory bandwidth (e.g. TDMA).

● Double-buffering techniques allow overlapping the execution of one 

task while the DMA loads the memory of the next task by partitioning 

the local memory into two partitions.

PE 0
SPM

PE 1
SPM

PE 2
SPM

DMA

Main Memory



Task Segmentation

● Practical implementation of the three-phase model requires program segmentation due to:
○ Size of local memory
○ Conditional program execution
○ Dynamic memory usage
○ Scheduling constraints

● A task is divided into multiple segments, each consisting of LOAD-COMPUTE-UNLOAD phases.

● We introduced an automated framework, based on the LLVM compiler, that segments a set of 

real-time tasks with the objective of improving the system’s schedulability.
○ M. R. Soliman and R. Pellizzoni, “PREM-based Optimal Task Segmentation under Fixed Priority Scheduling,” in 2019 

31th Euromicro Conference on Real-Time Systems (ECRTS), July 2019



Example

● Task under analysis has 3 segments (s1, s3, s6), segments (s2, s4, s5) belong to other tasks.

● During each interval, a segment of a task (ex: s2 in interval 2) executes using data and instructions 

in one partition. At the same time, the DMA unloads the content of the previous segment (s1) and 

loads the next segment (s3) in the other partition.



Previous Work Limitations

● Previous work suffers from two main limitations:
○ Lack of the interface between the application and the OS to communicate the data to load/unload.
○ Memory latency can only be hidden by overlapping the memory and execution phases for segments of 

different tasks.

● These limitations can lead to schedulability degradation for systems that run few, or even a single 

task on each processor; which is common as the number of processors in an MPSoC increases.



Paper Contributions

● Introduce the new streaming execution model to allow overlapping of memory and execution 

phases of segments of the same task.

● Extend the compiler framework to automatically segment streaming tasks.

● Propose an OS-independent application programming interface (API) to realize the scheduling and 

segmentation. 

● Implement the API on a commercial RTOS and evaluate it using a latest-generation MPSoC.



Streaming 
Execution Model

● System Model

● Task Model

● Streaming Notation

● Execution Model

● Example



System Model

● Sequential, sporadic three-phase tasks

● MPSoC platform comprising multiple processors. 

● Tasks are partitioned to processors. Each processor has a dedicated SPM, which is used to execute 

its assigned tasks.

● A DMA engine is used to execute memory phases and shared among all processors.

● Fixed-time DMA model so that the time required to complete all memory phases in each 

scheduling interval is constant.

● SPM-based OS is used to control the schedule of task execution segments and memory phases.



Task Model

● Task τi Sporadic with period Ti and deadline Di where Di ≤ Ti
● Each job executes a sequence of segments that can vary during run-time.

● Program executed has a single entry and a single exit.

● Task is modeled as a Directed Acyclic Graph (DAG) of segments created by the compiler.

● Each DAG has a set of maximal paths, where a maximal path P is an ordered sequence of segments 
that starts from the entry segment and ends at the exit segment.



Streaming Notation

● Each segment s is either a terminal or a streaming segment.

● A segment sj is a streaming segment if sj has a unique immediate successor segment sk , and sk can 

be executed in the scheduling interval after the one where sj executes; otherwise, sj is terminal.



Execution Model

● The SPM is not necessarily divided into two partitions, but footprint of each segment (number of 

virtual memory pages) is no larger than half the SPM size.

● DMA operations depends on the type of segments :
○ Terminal: same as previous work, LOAD/UNLOAD operations.
○ Streaming: SWAP-IN/SWAP-OUT operations, where only the pages that changes between segments are 

unloaded/loaded.



Example

● Intervals 0, 1, 2 have terminal segments and follows the three-phase model.

● Intervals 3, 4, 5 show the case of multiple streaming segments.

● Interval 6 shows the case of preempting the streaming segments from higher priority tasks.

● Interval 8 shows the case of resuming segment streaming after preemption.

● Interval 9 switches from streaming to terminal segments.



OS Programming 
Interface 

● Goal

● API Description

● Example



Goal

● The goal is to have a general OS API to be inserted in the code of a task in order to:
○ Partition the task into segments
○ Manage the SPM content.

● The API is generic for the three phase model and can be used manually or automatically during 

compilation.



API Description

● The SPM allocated to a task is partitioned into a set of buffers and objects that are 

allocated/deallocated using API calls:
○ A buffer is used for segment streaming such that the content of the buffer can be swapped during execution. 
○ Other SPM allocations that are not buffers are called objects.



Example



Task Set 
Segmentation

● Task Set Segmentation Algorithm

● Program Segmentation Algorithm



Task Set Segmentation Algorithm

● The algorithm recursively explores the 

task set from the highest to the lowest 

priority task. At each step i, the value of 

lmax represents the maximum length of 

segments of tasks (τi , … , τn) under 

which the previously explored higher 

priority tasks (τ1 
, ..., τi-1) are 

schedulable.

● The algorithm ends if all tasks are 

segmented or exits if any task is not 

schedulable.

● Schedulability analysis provided in the 

paper proves the correctness of the 

algorithm.



Program Segmentation Algorithm

● We adopt the segmentation algorithm from our previous work:
○ The compiler creates a tree-based representation of the program based on its CFG. Nodes in the tree, called 

program regions, represent either basic blocks, conditionals, loops, or function calls. 
○ Program segmentation is equivalent to assigning regions to segments while maintaining the structure of the 

program, and respecting constraints on the segment length  lmax and its maximum footprint.

○ Loop splitting and tiling are used to fit large data structures in the SPM, and break loops into shorter segment 
lengths.

● Two modifications on the algorithm based on the new model:
○ The tiling algorithm now returns a sequence of streaming segments.
○ The time of all API calls are accounted for in the algorithm.



Evaluation ● API Implementation

● API Overhead

● Schedulability Evaluation

● Evaluation Cases

● Case 1 Results

● Case 2 Results

● Results Summary



API Implementation

● The API and OS-related techniques were implemented in Erika Enterprise RTOS.

● The execution times and memory footprint of the API functions are compiled and measured using 

the Xilinx UltraScale+ ZCU102 MPSoC platform:
○  Four-core 1.2Ghz ARM Cortex-A53 processor.
○  32KB local instruction and data caches / core.
○ Last-Level Cache (LLC) of 1MB shared by all the A53 cores.
○ DDR4-2666 main memory controller of 64-bit data width connected to a 4GB DDR4 memory module and a 

programmable logic.

● The segmented code of the tasks using LLVM after adding the API calls, then linked together with 

Erika using the gcc compiler version 7.2.1.



API Overhead

● Code size (in bytes) and average (with standard deviation), worst-case, and best-case execution 

time (in ns) of the API implementation.



Schedulability 

● Proposed streaming execution model VS three-phase model without streaming.

● Ideal program segmentation is used as a reference for the best possible performance:
○ No restrictions on the SPM size.
○ The program code can be segmented at any arbitrary point without any overhead.

● API impact is assessed by measuring the schedulability with and without API Overhead.

● Benchmarks: (UTDSP, TACLeBench, and CortexSuite)



Evaluation Cases

● We use the benchmarks to generate synthetic task sets for two cases:
○ Case 1: Random number of tasks between 5 and 15. The utilization of each task is uniformly generated given 

a system utilization and the number of tasks.
○ Case 2 (An example of a system that can benefit the most from the streaming model): Force the benchmark 

‘disparity' to be a heavy load task with 50% of the system utilization, while generating 3 to 5 tasks with the 
other 50% of the system utilization.

● System utilization varies between 0.2 and 0.95 using 250 task sets per utilization level.

● The SPM size varies between 2 kB and 512 kB.

● The DMA throughput varies between 0.1 GB/s to 4.0 GB/s

● Results are presented in terms:
○ System schedulability: the proportion of the schedulable task sets out of the total tested task sets.
○ Weighted schedulability metric: 



Case 1 Results



Case 2 Results



Results Summary

● Case 1: The  streaming model results in an improvement up to 16% for the weighted schedulability 

compared the non streaming mode.

● Case 2: The  streaming model results in an improvement up to 33% for the weighted schedulability 

compared the non streaming mode.

● The schedulability improves at the beginning as the SPM size increases since larger SPM sizes 

cause less segmentation and hence less overhead and less blocking from lower priority tasks. Then, 

the performance peaks and starts to decline as large SPM sizes imply large DMA times due to the 

fixed-time assumption used in the analysis; this causes under-utilization of the segments with 

smaller execution time.

● Increasing the DMA throughput improves the schedulability as the impact of the DMA time on the 

response time of the tasks is reduced.

● The effect of the overhead on the schedulability is minimal and becomes only relevant at high DMA 

throughput when segment length is shorter.



Conclusion & 
Future Work



Conclusion

● The three-phase execution model has proven effective in increasing predictability of memory 

accesses while hiding access latency through the use of a DMA engine.

● We have proposed a new streaming model for three-phase tasks that allows consecutive segments 

of the same task to execute sequentially, improving schedulability.

● We have described an automatic compilation framework that adds all required OS calls to the 

programs, and evaluated the approach on a commercial RTOS and realistic benchmarks.



Future Work

● Make the model more applicable by relaxing program constraints and provide automatic program 

transformation algorithms.

● Improve the schedulability by making more complex assumptions on DMA time (variable-time 

model).

● Extend the API to handle different I/O device types (synchronous and asynchronous) and 

hardware accelerators in a way compatible with the three-phase model


