Butterfly Attack: Adversarial Manipulation of Temporal Properties of Cyber-Physical Systems

Rouhollah Mahfouzi¹, Amir Aminifar², Soheil Samii^{1,3}, Mathias Payer², Petru Eles¹, Zebo Peng¹

- 1) Linköping University, Sweden
- 2) École Polytechnique Fédérale de Lausanne, Switzerland
 - 3) General Motors R&D, US

Cyber-Physical Systems

Shared Processor

- Shared platform
- Mixed-critical tasks
- Control applications

$$h =$$
sampling period
 $L = R^b$ (Latency)
 $J = R^w - R^b$ (Jitter)

$$h =$$
sampling period
 $L = R^b$ (Latency)
 $J = R^w - R^b$ (Jitter)

$$h =$$
sampling period
 $L = R^b$ (Latency)
 $J = R^w - R^b$ (Jitter)

$$h =$$
sampling period
 $L = R^b$ (Latency)
 $J = R^w - R^b$ (Jitter)

$$h =$$
sampling period
 $L = R^b$ (Latency)
 $I = R^w - R^b$ (Jitter)

$$h =$$
sampling period
 $L = R^b$ (Latency)
 $J = R^w - R^b$ (Jitter)

Stability

Stability curve derived with Jitter Margin toolbox

Common Belief*

- **❖** Main thread: Exceeding a certain worst-case execution/computation time
- Giving more resource to a controller leads to better control quality
- **Security measures: prevent tasks from consuming more resources**

Common Belief*

Our Contribution!

- **❖** Main thread: Exceeding a certain worst-case execution/computation time
- Giving more resource to a controller leads to better control quality
- **Security measures: prevent tasks from consuming more resources**

Common Belief*

Our Contribution!

Wrong!

- ❖ Main thread: Exceeding a certain worst-case execution/computation time
- Giving more resource to a controller leads to better control quality
- Security measures: prevent tasks from consuming more resources

Inter-dependency

Inter-dependency

$$\tau_i = (\rho_i, c_i, h_i)$$
 $\tau_1 = (H, 3, 6)$
 $\tau_2 = (M, 2, 8)$
 $\tau_3 = (L, 1, 8)$

Inter-dependency

$$\tau_i = (\rho_i, c_i, h_i)$$
 $\tau_1 = (H, 3, 6)$
 $\tau_2 = (M, 2, 8)$
 $\tau_3 = (L, 1, 8)$

Inter-dependency

$$\tau_i = (\rho_i, c_i, h_i)$$
 $\tau_1 = (H, 3, 6)$
 $\tau_2 = (M, 2, 8)$
 $\tau_3 = (L, 1, 8)$

$$J_3 = R_3^w - R_3^b = 2$$

Inter-dependency

 $J_3 = R_3^w - R_3^b = 2$

Non-monotonicity

(a) Original task set

Inter-dependency

$$J_3 = R_3^w - R_3^b = 2$$

$$\tau_i = (\rho_i, c_i, h_i)$$
 $\tau_1 = (H, 1, 6)$
 $\tau_2 = (M, 2, 8)$
 $\tau_3 = (L, 1, 8)$

Inter-dependency

 $J_3 = R_3^w - R_3^b = 2$

Non-monotonicity

$$\tau_i = (\rho_i, c_i, h_i)$$
 $\tau_1 = (H, 1, 6)$
 $\tau_2 = (M, 2, 8)$
 $\tau_3 = (L, 1, 8)$

 $J_3 = R_3^w - R_3^b = 1$

Inter-dependency

 $J_3 = R_3^w - R_3^b = 2$

$$\tau_i = (\rho_i, c_i, h_i)$$
 $\tau_1 = (H, 3, 6)$
 $\tau_2 = (M, 1, 8)$
 $\tau_3 = (L, 1, 8)$

 $J_3 = R_3^w - R_3^b = 1$

Inter-dependency

 $J_3 = R_3^w - R_3^b = 2$

❖ Non-monotonicity

(d) Decreasing computation time c₂

(e) Decreasing computation time c₁

$$J_3 = R_3^w - R_3^b = 3$$

$$J_3 = R_3^w - R_3^b = 1$$

Butterfly Attack

Indirectly manipulate less critical tasks to increase jitter of a critical task and destabilize the physical system

Butterfly Attack

Inter-dependency

Indirectly manipulate less critical tasks to increase jitter of a critical task and destabilize the physical system

Butterfly Attack

Inter-dependency

 S_1 S_2 S_n C_1 C_2 C_n C_n

Indirectly manipulate less critical tasks to increase jitter of a critical task and destabilize the physical system

$$L_2$$
 = 5, $J_2 = R_2^w - R_2^b = 0$

$$L_2 = 5$$
, $J_2 = R_2^w - R_2^b = 0$

 $\times 10^{-4}$

(b) Quadcopter control cost (stable).

(a) Quadcopter vertical angle (unstable).

(b) Quadcopter control cost (unstable).

Butterfly attack

Manipulating less critical (protected) task

Increase the available resource

Difficult to detect attacker

Beyond Butterfly attack

Hijack the drone using Butterfly attack

***** Launch the attack for short time

❖ Needs some extra knowledge

Unpredicted results

Mitigation

Run a dummy task to compensate

Design a robust controller

***** Ensure temporal isolation using servers

Conclusion

Introduction to Butterfly attack

Identify Inter-dependency and Non-monotonicity

Demonstrate the possibility of attack experimentally

Questions

