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Shared Processor

- processing unit

** Mixed-critical tasks

+»* Shared platform

+»* Control applications
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Common Belief’
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** Main thread: Exceeding a certain worst-case execution/computation time
** Giving more resource to a controller leads to better control quality

¢ Security measures: prevent tasks from consuming more resources

*Vestal S. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance. In28th IEEE International Real-Time Systems Symposium (RTSS 2007) 12
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Control Tasks Characteristics
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** Non-monotonicity
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Butterfly Attack

> = = =

task A task B

processing unit

** Indirectly manipulate less critical tasks to increase jitter of a
critical task and destabilize the physical system
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Butterfly attack

** Manipulating less critical (protected) task

** Increase the available resource
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Beyond Butterfly attack

¢ Hijack the drone using Butterfly attack
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Mitigation

*¢ Run a dummy task to compensate
+»* Design a robust controller

¢ Ensure temporal isolation using servers
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Conclusion

¢ Introduction to Butterfly attack
+» Identify Inter-dependency and Non-monotonicity

** Demonstrate the possibility of attack experimentally
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